我正在尝试设计一个优化器,该优化器根据一些预定义的参数来选择要出售的产品。唯一的限制是要出售的最大产品数量和产品之间的某些依存关系(如果您出售产品B,则必须出售产品D f.e.)。我在定义后一个约束时遇到问题。
下面是问题的简化版本:
import numpy as np
from pyomo import environ as pe
## define articles
article_list=('A','B','C','D')
## and their values ("sales")
alphas=(0,1,2,3)
alphas_input=dict(zip(article_list,alphas))
## generate compatibility matrix, 1 means article pair is dependant
compatibilities=dict(
((article_a,article_b),0)
for article_a in article_list
for article_b in article_list
)
## manually assign compatibilities so that
## every product is dependant on itself and D and B are dependant on each other
comp_arr=[1,0,0,0,0,1,0,1,0,0,1,0,0,1,0,1]
compatibilities=dict(zip(compatibilities.keys(),comp_arr))
## indices: articles
model_exp.article_list = pe.Set(
initialize=article_list)
定义模型
## create model
model_exp = pe.ConcreteModel()
## parameters: fixed values
model_exp.alphas=pe.Param(
model_exp.article_list,
initialize=alphas_input,
within=pe.Reals)
model_exp.compatibilities=pe.Param(
model_exp.article_list*model_exp.article_list,
initialize=compatibilities,
within=pe.Binary
)
## variables: selected articles -> 0/1 values
model_exp.assignments=pe.Var(
model_exp.article_list,
domain=pe.Binary
)
## objective function
model_exp.objective=pe.Objective(
expr=pe.summation(model_exp.alphas,model_exp.assignments),
sense=pe.maximize
)
定义约束
def limit_number_articles(model):
n_products_assigned=sum(
model_exp.assignments[article]
for article in model.article_list
)
return n_products_assigned<=2
model_exp.limit_number_articles=pe.Constraint(
rule=limit_number_articles
)
现在有问题的约束。没有此约束,优化器将选择C和D作为这两篇文章,因为它们具有较高的alpha。但是由于我已将D和B定义为相互依赖,因此我需要优化器选择它们两者,或者都不选择它们(因为它们的alpha值高于A和C,因此最佳解决方案是选择它们)。 / p>
这是我最需要定义的约束条件
def control_compatibilities(model,article_A):
sum_list=[]
#loopo over article pairs
for article_loop in model_exp.article_list:
# check whether the article pair is dependant
if model_exp.compatibilities[article_A,article_loop]==1:
# sum the amount of articles among the pair that are included
# if none are (0) or both are (2) return True
sum_list.append(sum([model_exp.assignments[article_A]==1,
model_exp.assignments[article_loop]==1]) in [0,2])
else:
#if they are not dependant, no restruction applies
sum_list.append(True)
sum_assignments=sum(sum_list)
return sum_assignments==4
model_exp.control_compatibilities=pe.Constraint(
model_exp.article_list,
rule=control_compatibilities
)
上面的约束返回以下错误:
Invalid constraint expression. The constraint expression resolved to a
trivial Boolean (True) instead of a Pyomo object. Please modify your rule to
return Constraint.Feasible instead of True.
任何有关如何定义约束的想法都会很有帮助。
答案 0 :(得分:0)
查看一些有关对逻辑约束和二进制变量含义进行建模的资源。快速的Google搜索产生了以下资源,这些资源应指导您制定有效的公式:
答案 1 :(得分:0)
我解决了它从另一项(0-0 = 0和1-1 = 0)中减去一项的选择,并遍历所有相关产品对的问题。
def control_compatibilities(model,article_A):
compatible_pairs=[k for k,v in compatibilities.items() if v==1]
compatible_pairs_filt=[a for a in compatible_pairs if a[0]==article_A]
sum_assignments=sum(model_exp.assignments[a[0]]-model_exp.assignments[a[1]]
for a in compatible_pairs_filt)
return sum_assignments==0
model_exp.control_compatibilities=pe.Constraint(
model_exp.article_list,
rule=control_compatibilities
)