我有一个运行中的rshiny应用程序,但我想我需要使用反应性功能添加一些功能,以使其更加高效并防止崩溃。我创建了该应用程序的一个版本,该版本使用人口普查数据而不是我使用的流量计数数据,因此我意识到该示例有些琐碎,但是我发现在第一个过滤器中选择不同的状态时,它会破坏相同的内容。我要在此处维护的事情是动态的和级联的过滤器,其中一个过滤器通知后者,这一切似乎都很好,但是当我添加地图时,Rstudio在不一致的时间崩溃,没有任何警告。有时,我可以在第一个过滤器中进行多个选择,而不会出现问题,然后毫无问题地进行轰炸。我正在使用Studio v1.1456和R v3.5.3。
library(shiny)
library(ggplot2)
library(plotly)
library(dplyr)
library(shinyWidgets)
library(tigris)
library(leaflet)
library(rgeos)
library(mapview)
#install.packages(c("shiny","leaflet","spData","ggplot2","plotly","dplyr","shinyWidgets","rgdal","tigris","readxl","mapviews"))
# Load data
State_01_Tracts_Sp <- tracts("01")
State_02_Tracts_Sp <- tracts("02")
State_04_Tracts_Sp <- tracts("04")
State_05_Tracts_Sp <- tracts("05")
State_06_Tracts_Sp <- tracts("06")
Tracts_Sp <- rbind(State_01_Tracts_Sp ,State_02_Tracts_Sp, State_04_Tracts_Sp, State_05_Tracts_Sp , State_06_Tracts_Sp )
#Decode fips into descriptive state and county names
Tracts_Sp@data$State <- fips_codes$state_name[match(Tracts_Sp@data$STATEFP,fips_codes$state_code)]
Tracts_Sp@data$County <- fips_codes$county[match(Tracts_Sp@data$COUNTYFP,fips_codes$county_code)]
#Create a copy of the spatial data's data frame
Data.. <- Tracts_Sp@data
#Set up User Interface
ui <- fluidPage(
titlePanel("Census Viewer Test"),
tabsetPanel(
#Daily Counts Panel
##############
#Hourly Counts Panel
#######################
tabPanel("Tab 1",
#Call plot
fluidRow(column(width = 12,plotlyOutput("county_plot" ))),
#Location Details
fluidRow(
column(3,
h4("Select Details"),
uiOutput("State_selector"),
uiOutput("County_selector"),
uiOutput("Tract_selector")),
column(6,
#h4("Selected Location"),
leafletOutput("map_plot",height = 500))
#Close row
)
#Close panel
)
#Close setPanel
)
#PAge end
)
#Set up Server
#---------------------------
server <- shinyServer(function(session,input,output){
#Temporal Details
##################
#State
output$State_selector <- renderUI({
selectInput(inputId = "State",
label = "State", multiple = FALSE,
choices = c( unique(Data..$State)),
selected = unique(Data..$State)[1])
})
#County selection----
output$County_selector <- renderUI({
available0 <- as.character(unique(Data..$County[Data..$State %in% input$State ] ))
pickerInput(inputId = "County", label = "Select/deselect all + format selected", choices = as.character(unique(available0)),
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE,selected = as.character(unique(available0)))
})
#Tract selection----
output$Tract_selector <- renderUI({
available1 <- as.character(unique(Data..$GEOID[Data..$State %in% input$State ] ))
pickerInput(inputId = "Tract", label = "Select/deselect all + format selected", choices = as.character(unique(available1)),
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE,selected = as.character(unique(available1)))
})
#Graphics
##########################
#Select final data and chart-----
output$county_plot <- renderPlotly({
#Select data
dat <- Data..[Data..$State%in%input$State & Data..$County%in%input$County & Data..$GEOID%in%input$Tract ,]
#Set up axis parameters depending on amount of data
angle = 90
#Initialze chart
ggplotly(ggplot(data = dat, x=GEOID, y = ALAND, fill = State) +
geom_bar(aes(x=GEOID, y = ALAND, fill = State),color = "black", position = "dodge", stat = "identity")+
ggtitle(paste("Land Area of Select Counties ",unique(dat$State),sep="")) +
#Center plot
theme(plot.title = element_text(hjust = 0.5)) +
ylab("LAnd Area") +
xlab("") +
guides(color=guide_legend("State")) +
theme(axis.text.x = element_text(angle = angle, hjust = 1),plot.background = element_rect(fill = "darkseagreen"))) %>% layout(dragmode = "select")
})
#Select final data and map-----
output$map_plot <- renderLeaflet({
#Select data
Map_Data_Sp <- Tracts_Sp[Tracts_Sp@data$State%in%input$State,]
#Create map
Map <- mapview(Map_Data_Sp, map.types = "OpenStreetMap", legend = FALSE, col.regions = "red",color = "black",cex = 10)
Map@map
#Close map
})
})
#Run App
shinyApp(ui,server)