我有以下数据框,其中每个病人都是一行(我只显示了其中的一个样本):
df = structure(list(firstY = c("N/A", "1", "3a", "3a", "3b", "1",
"2", "1", "5", "3b"), secondY = c("N/A", "1", "2", "3a", "4",
"1", "N/A", "1", "5", "3b"), ThirdY = c("N/A", "1", "N/A", "3b",
"4", "1", "N/A", "1", "N/A", "3b"), FourthY = c("N/A", "1", "N/A",
"3a", "4", "1", "N/A", "1", "N/A", "3a"), FifthY = c("N/A", "1",
"N/A", "2", "5", "1", "N/A", "N/A", "N/A", "3b")), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -10L))
我想绘制一个Sankey图,该图显示每个患者随时间的轨迹,我知道我必须创建节点和链接,但是在将数据转换为完成此操作所需的格式时遇到了问题。具体来说,最有问题的问题是计算每个轨迹有多少患者,例如,从第1阶段到第2阶段的第一年去了多少患者,以及所有其他组合。
任何有关数据准备的帮助将不胜感激。
Alluvial软件包虽然简单易懂,但是在有大量数据的情况下不能很好地应对。
答案 0 :(得分:3)
尚不清楚要实现什么目标,因为您没有提及要使用的软件包,但是查看数据,如果可以使用{{1 }}程序包:
alluvial
library(alluvial) # sankey plots
library(dplyr) # data manipulation
函数可以像您一样使用宽格式的数据,但是它需要一个频数列,因此我们可以创建它,然后进行绘制:
alluvial
反之,如果您想使用特定的程序包,则应指定哪个程序包。
编辑
使用network3D有点棘手,但是您也许可以从中获得一些不错的结果。您需要链接和节点,并使它们匹配,所以首先我们可以创建链接:
dats_all <- df %>% # data
group_by( firstY, secondY, ThirdY, FourthY, FifthY) %>% # group them
summarise(Freq = n()) # add frequencies
# now plot it
alluvial( dats_all[,1:5], freq=dats_all$Freq, border=NA )
现在,节点以# put your df in two columns, and preserve the ordering in many levels (columns) with paste0
links <- data.frame(source = c(paste0(df$firstY,'_1'),paste0(df$secondY,'_2'),paste0(df$ThirdY,'_3'),paste0(df$FourthY,'_4')),
target = c(paste0(df$secondY,'_2'),paste0(df$ThirdY,'_3'),paste0(df$FourthY,'_4'),paste0(df$FifthY,'_5')))
# now convert as character
links$source <- as.character(links$source)
links$target<- as.character(links$target)
的方式成为链接中的每个元素:
unique()
现在,我们需要每个节点都有一个链接(反之亦然),因此我们将它们匹配并进行数字转换。请注意末尾的-1,因为networkD3是0索引,这意味着数字(索引)从0开始。
nodes <- data.frame(name = unique(c(links$source, links$target)))
现在,您应该准备绘制Sankey了:
links$source <- match(links$source, nodes$name) - 1
links$target <- match(links$target, nodes$name) - 1
links$value <- 1 # add also a value
答案 1 :(得分:2)
使用 ggforce :
library(ggforce)
library(dplyr)
xx <- df %>%
count(firstY, secondY, ThirdY, FourthY, FifthY, name = "value") %>%
gather_set_data(1:5) %>%
mutate(x = factor(x, levels = colnames(df)))
ggplot(xx, aes(x, id = id, split = y, value = value)) +
geom_parallel_sets(alpha = 0.3, axis.width = 0.1) +
geom_parallel_sets_axes(axis.width = 0.3) +
geom_parallel_sets_labels(colour = "white")
答案 2 :(得分:2)
library(tidyr)
library(dplyr)
library(networkD3)
links <-
df %>%
mutate(row = row_number()) %>% # add a row id
gather('col', 'source', -row) %>% # gather all columns
mutate(col = match(col, names(df))) %>% # convert col names to col nums
mutate(source = paste0(source, '_', col)) %>% # add col num to node names
group_by(row) %>%
arrange(col) %>%
mutate(target = lead(source)) %>% # get target from following node in row
ungroup() %>%
filter(!is.na(target)) %>% # remove links from last column in original data
select(source, target) %>%
group_by(source, target) %>%
summarise(value = n()) # aggregate and count similar links
# create nodes data frame from unque nodes found in links data frame
nodes <- data.frame(id = unique(c(links$source, links$target)),
stringsAsFactors = FALSE)
# remove column id from names
nodes$name <- sub('_[0-9]*$', '', nodes$id)
# set links data to the 0-based index of the nodes in the nodes data frame
links$source <- match(links$source, nodes$id) - 1
links$target <- match(links$target, nodes$id) - 1
sankeyNetwork(Links = links, Nodes = nodes, Source = 'source',
Target = 'target', Value = 'value', NodeID = 'name')