Coxph与Flexsurvreg:协变量效应的矛盾预测

时间:2019-06-04 22:11:50

标签: r statistics survival-analysis survival

在给定两个协变量的情况下,我在操作延迟的启发式数据集上运行考克斯比例风险模型:

> dat.op
   delay   censor cost demand
1 2.875000      1 3.10   0.1
2 1.569444      1 0.68   0.1
3 2.000000      1 6.05   0.2
4 1.750000      1 5.22   0.1
5 2.000000      1 4.67   0.3
6 3.000000      1 9.30   1.4

coxph下,两个协变量如预期的那样,对危险率具有负面影响,系数为-0.0813-2.5490。换句话说(现在暂时忽略了较高的p值),成本和需求都会导致操作延迟的增加:

> coxph(Surv(delay, censor) ~ cost + demand, data=dat.op)
Call:
coxph(formula = Surv(delay, censor) ~ cost + demand, data = dat.op)

          coef exp(coef) se(coef)     z    p
cost   -0.0813    0.9219   0.3909 -0.21 0.84
demand -2.5490    0.0782   3.6635 -0.70 0.49

Likelihood ratio test=3.35  on 2 df, p=0.187
n= 6, number of events= 6 

但是,当我通过flexsurvreg运行数据时,为了同时获得潜在危害分布的参数估计值(假设常用的Weibull),我会观察到不同的效果:

> flexsurvreg(Surv(delay, censor) ~ cost + demand, data=dat.op, dist="weibull")
Call:
flexsurvreg(formula = Surv(delay, censor) ~ cost + demand, data = dat.op, 
    dist = "weibull")

Estimates: 
        data mean  est      L95%     U95%     se       exp(est)  L95%     U95%   
shape        NA     5.2163   2.7040  10.0627   1.7487       NA        NA       NA
scale        NA     2.5223   1.3762   4.6226   0.7796       NA        NA       NA
cost     4.8367    -0.0427  -0.2119   0.1264   0.0863   0.9582    0.8091   1.1348
demand   0.3667     0.3943  -0.4005   1.1891   0.4055   1.4834    0.6700   3.2842

N = 6,  Events: 6,  Censored: 0
Total time at risk: 13.19444
Log-likelihood = -3.914008, df = 4
AIC = 15.82802

在这里,需求的系数为0.3943,表明它减少了的运行延迟,这是荒谬的。

切换到Gompertz发行版后,我现在看到 cost 减少了操作延迟:

> flexsurvreg(Surv(delay, censor) ~ cost + demand, data=dat.op, dist="gompertz")
Call:
flexsurvreg(formula = Surv(delay, censor) ~ cost + demand, data = dat.op, 
    dist = "gompertz")

Estimates: 
        data mean  est        L95%       U95%       se         exp(est)   L95%       U95%     
shape          NA   2.27e+00   7.05e-01   3.83e+00   7.97e-01         NA         NA         NA
rate           NA   6.10e-03   2.36e-05   1.58e+00   1.73e-02         NA         NA         NA
cost     4.84e+00   2.56e-01  -6.92e-01   1.21e+00   4.84e-01   1.29e+00   5.00e-01   3.34e+00
demand   3.67e-01  -2.26e+00  -6.98e+00   2.46e+00   2.41e+00   1.04e-01   9.27e-04   1.17e+01

N = 6,  Events: 6,  Censored: 0
Total time at risk: 13.19444
Log-likelihood = -4.208994, df = 4
AIC = 16.41799

我误解了这些flexsurvreg结果吗?是否有一种方法可以从一组输出中获得与coxph的估计更一致的Weibull参数估计?

0 个答案:

没有答案