我将对SVAR模型使用FEVD命令。我需要它来获取模型的预测误差方差分解。但是,我得到一个错误。我需要做些什么才能使代码正常工作?
A = np.asarray([[1,"E",0,0,"E",0,"E"],
["E",1,"E","E",0,0,0],
[0,0,1,"E","E",0,0],
[0,0,0,1,"E",0,0],
[0,0,0,0,1,0,0],
[0,0,0,0,"E",1,0],
["E","E","E","E","E","E",1]])
svar_model = sm.tsa.SVAR(df, svar_type="A", A=A)
svar_result =svar_model.fit(maxlags=6,maxiter = 3000)
fevd = svar_result.fevd(5)
fevd.summary()
希望得到这个:
FEVD for realgdp
realgdp realcons realinv
0 1.000000 0.000000 0.000000
1 0.864889 0.129253 0.005858
2 0.816725 0.177898 0.005378
3 0.793647 0.197590 0.008763
4 0.777279 0.208127 0.014594
FEVD for realcons
realgdp realcons realinv
0 0.359877 0.640123 0.000000
1 0.358767 0.635420 0.005813
2 0.348044 0.645138 0.006817
3 0.319913 0.653609 0.026478
4 0.317407 0.652180 0.030414
FEVD for realinv
realgdp realcons realinv
0 0.577021 0.152783 0.270196
1 0.488158 0.293622 0.218220
2 0.478727 0.314398 0.206874
3 0.477182 0.315564 0.207254
4 0.466741 0.324135 0.209124
但是,实际上,有此错误:
TypeError: irf() got an unexpected keyword argument 'var_decomp'