所以我有一个列,它是 Pandas Dataframe 中列的对象类型。
它包含以下数据:
array(['9.4', '9.8', '10', '9.5', '10.5', '9.2', '9.9', '9.1', '9.3', '9',
'9.7', '10.1', '10.6', '9.6', '10.8', '10.3', '13.1', '10.2',
'10.9', '10.7', '12.9', '10.4', '13', '14', '11.5', '11.4', '12.4',
'11', '12.2', '12.8', '12.6', '12.5', '11.7', '11.3', '12.3', '12',
'11.9', '11.8', '8.7', '13.3', '11.2', '11.6', '11.1', '13.4',
'12.1', '8.4', '12.7', '14.9', '13.2', '13.6', '13.5',
'100.333.333.333.333', '9.55', '8.5', '110.666.666.666.667',
'956.666.666.666.667', '10.55', '8.8', '135.666.666.666.667',
'11.95', '9.95', '923.333.333.333.333', '9.25', '9.05', '10.75',
'8.6', '8.9', '13.9', '13.7', '8', '8.0', '14.2', '11.94',
'128.933.333.333.333', '114.666.666.666.667', '10.98',
'114.333.333.333.333', '105.333.333.333.333',
'953.333.333.333.333', '109.333.333.333.333',
'113.666.666.666.667', '113.333.333.333.333',
'973.333.333.333.333', '11.05', '9.75', '11.35', '11.45', '14.05',
'123.333.333.333.333', '12.75', '13.8', '12.15', '13.05',
'112.666.666.666.667', '105.666.666.666.667',
'117.333.333.333.333', '11.75', '10.65', '109.666.666.666.667',
'101.333.333.333.333', '10.15', '104.666.666.666.667',
'116.333.333.333.333', '12.25', '11.85', '11.65', '13.55',
'131.333.333.333.333', '120.666.666.666.667', '11.55',
'963.333.333.333.333', '12.05'], dtype=object)
我想将点数('。')多于一个的点更新为0左右。我对 regex -es不太熟悉,但是想法是使用 regex 解决此问题,而不是“ 953.333.333.333.333”!
DF.replace({'column': '953.333.333.333.333'},'0')
非常感谢!
答案 0 :(得分:6)
将numpy.where
与Series.str.count
和Series.gt
结合使用:
DF['column'] = np.where(DF['column'].str.count('\.').gt(1), 0, DF['column'])
[出]
array(['9.4', '9.8', '10', '9.5', '10.5', '9.2', '9.9', '9.1', '9.3', '9',
'9.7', '10.1', '10.6', '9.6', '10.8', '10.3', '13.1', '10.2',
'10.9', '10.7', '12.9', '10.4', '13', '14', '11.5', '11.4', '12.4',
'11', '12.2', '12.8', '12.6', '12.5', '11.7', '11.3', '12.3', '12',
'11.9', '11.8', '8.7', '13.3', '11.2', '11.6', '11.1', '13.4',
'12.1', '8.4', '12.7', '14.9', '13.2', '13.6', '13.5', 0, '9.55',
'8.5', 0, 0, '10.55', '8.8', 0, '11.95', '9.95', 0, '9.25', '9.05',
'10.75', '8.6', '8.9', '13.9', '13.7', '8', '8.0', '14.2', '11.94',
0, 0, '10.98', 0, 0, 0, 0, 0, 0, 0, '11.05', '9.75', '11.35',
'11.45', '14.05', 0, '12.75', '13.8', '12.15', '13.05', 0, 0, 0,
'11.75', '10.65', 0, 0, '10.15', 0, 0, '12.25', '11.85', '11.65',
'13.55', 0, 0, '11.55', 0, '12.05'], dtype=object)
答案 1 :(得分:2)
最好编写一个函数然后使用df.column.apply(function)
。
功能如下:
def fun(val):
if (len(val.split('.')) > 2) :
return '0'
else:
return val
答案 2 :(得分:2)
该表达式可以简单地捕获所需元素中的.
:
'\d+\.\d+'|'\d+'|(\.)
使用该捕获组:
(\.)
# coding=utf8
# the above tag defines encoding for this document and is for Python 2.x compatibility
import re
regex = r"'\d+\.\d+'|'\d+'|(\.)"
test_str = ("'9.4', '9.8', '10', '9.5', '10.5', '9.2', '9.9', '9.1', '9.3', '9',\n"
" '9.7', '10.1', '10.6', '9.6', '10.8', '10.3', '13.1', '10.2',\n"
" '10.9', '10.7', '12.9', '10.4', '13', '14', '11.5', '11.4', '12.4',\n"
" '11', '12.2', '12.8', '12.6', '12.5', '11.7', '11.3', '12.3', '12',\n"
" '11.9', '11.8', '8.7', '13.3', '11.2', '11.6', '11.1', '13.4',\n"
" '12.1', '8.4', '12.7', '14.9', '13.2', '13.6', '13.5',\n"
" '100.333.333.333.333', '9.55', '8.5', '110.666.666.666.667',\n"
" '956.666.666.666.667', '10.55', '8.8', '135.666.666.666.667',\n"
" '11.95', '9.95', '923.333.333.333.333', '9.25', '9.05', '10.75',\n"
" '8.6', '8.9', '13.9', '13.7', '8', '8.0', '14.2', '11.94',\n"
" '128.933.333.333.333', '114.666.666.666.667', '10.98',\n"
" '114.333.333.333.333', '105.333.333.333.333',\n"
" '953.333.333.333.333', '109.333.333.333.333',\n"
" '113.666.666.666.667', '113.333.333.333.333',\n"
" '973.333.333.333.333', '11.05', '9.75', '11.35', '11.45', '14.05',\n"
" '123.333.333.333.333', '12.75', '13.8', '12.15', '13.05',\n"
" '112.666.666.666.667', '105.666.666.666.667',\n"
" '117.333.333.333.333', '11.75', '10.65', '109.666.666.666.667',\n"
" '101.333.333.333.333', '10.15', '104.666.666.666.667',\n"
" '116.333.333.333.333', '12.25', '11.85', '11.65', '13.55',\n"
" '131.333.333.333.333', '120.666.666.666.667', '11.55',\n"
" '963.333.333.333.333', '12.05'")
matches = re.finditer(regex, test_str, re.MULTILINE)
for matchNum, match in enumerate(matches, start=1):
print ("Match {matchNum} was found at {start}-{end}: {match}".format(matchNum = matchNum, start = match.start(), end = match.end(), match = match.group()))
for groupNum in range(0, len(match.groups())):
groupNum = groupNum + 1
print ("Group {groupNum} found at {start}-{end}: {group}".format(groupNum = groupNum, start = match.start(groupNum), end = match.end(groupNum), group = match.group(groupNum)))
# Note: for Python 2.7 compatibility, use ur"" to prefix the regex and u"" to prefix the test string and substitution.