W = tf.Variable(tf.zeros([1]))如何生成随机值

时间:2019-06-03 00:07:53

标签: python deep-learning

W = tf.Variable(tf.zeros([1]))

我从上面的陈述中了解到,每次为W运行tensorflow会话时,我都会获得值0。

例如: 如果我运行:

W = tf.Variable(tf.zeros([1]))
with tf.Session() as sess:
sess.run(W.initializer)
print(sess.run(W))

我得到输出0。

但是,如果我运行:

with tf.name_scope("LinearRegression") as scope:
W = tf.Variable(tf.zeros([1])) #we are generating a random point using a different strategy and storing in w
b = tf.Variable(tf.zeros([1])) #we are generating a random point using a different strategy and storing in b
y = W * x_data + b


for i in range(6):
sess.run(train)
print(i, sess.run(W), sess.run(b), sess.run(loss))
plt.plot(x_data, y_data, 'ro', label='Original data')
plt.plot(x_data, sess.run(W)*x_data + sess.run(b))

我得到不同的W值。

这怎么可能使我无处为W赋值,然后每次都获得W的随机值。例如

[0.09564029] [0.38026553] 0.002828496

上面提供的..如果需要,将发布完整的代码

预计是每次打印0

0 个答案:

没有答案