从RDD

时间:2019-06-02 12:51:55

标签: apache-spark rdd apache-spark-dataset

我最近开始使用Spark的Dataset API,正在尝试一些示例。以下是一个这样的示例,但失败了,AnalysisException

case class Fruits(name: String, quantity: Int)

val source = Array(("mango", 1), ("Guava", 2), ("mango", 2), ("guava", 2))
val sourceDS = spark.createDataset(source).as[Fruits]
// or val sourceDS = spark.sparkContext.parallelize(source).toDS().as[Fruits]
val resultDS = sourceDS.filter(_.name == "mango").filter(_.quantity > 1)

执行上述代码时,我得到:

19/06/02 18:04:42 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
19/06/02 18:04:42 INFO CodeGenerator: Code generated in 405.026891 ms
Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve '`name`' given input columns: [_1, _2];
    at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$$nestedInanonfun$checkAnalysis$1$2.applyOrElse(CheckAnalysis.scala:110)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$$nestedInanonfun$checkAnalysis$1$2.applyOrElse(CheckAnalysis.scala:107)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformUp$2(TreeNode.scala:278)
    at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:278)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformUp$1(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:326)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformUp$1(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:326)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformUp$1(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapChild$2(TreeNode.scala:295)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$4(TreeNode.scala:354)
    at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:237)
    at scala.collection.immutable.List.foreach(List.scala:392)
    at scala.collection.TraversableLike.map(TraversableLike.scala:237)
    at scala.collection.TraversableLike.map$(TraversableLike.scala:230)
    at scala.collection.immutable.List.map(List.scala:298)
    at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:354)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
    at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:275)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$transformExpressionsUp$1(QueryPlan.scala:93)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:105)
    at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:105)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:116)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:126)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:126)
    at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:93)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$1(CheckAnalysis.scala:107)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$1$adapted(CheckAnalysis.scala:85)
    at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:85)
    at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:82)
    at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:95)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(ExpressionEncoder.scala:258)
    at org.apache.spark.sql.Dataset.deserializer$lzycompute(Dataset.scala:214)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$deserializer(Dataset.scala:213)
    at org.apache.spark.sql.Dataset$.apply(Dataset.scala:72)
    at org.apache.spark.sql.Dataset.as(Dataset.scala:431)
    at SocketStreamWordcountApp$.main(SocketStreamWordcountApp.scala:20)
    at SocketStreamWordcountApp.main(SocketStreamWordcountApp.scala)
19/06/02 18:04:43 INFO SparkContext: Invoking stop() from shutdown hook

我认为,当我们尝试创建新的数据集或使用as[T]将RDD覆盖到数据集时,它会起作用。不是吗?

仅出于实验目的,我尝试创建一个数据框并将该数据框转换为如下所示的数据集,但最终还是遇到相同的错误。

val sourceDS = spark.sparkContext.parallelize(source).toDF().as[Fruits]
// or val sourceDS = spark.createDataFrame(source).as[Fruits]

任何帮助将不胜感激。

3 个答案:

答案 0 :(得分:0)

输入DataFrame的列名必须与case类的字段名匹配。因此,您需要中间Dataset[Row]

val sourceDS = spark.createDataset(source).toDF("name", "quantity").as[Fruits]

或一路走下去。

当然,合理的解决方案是从一开始就以Fruits开始。

val source = Array(Fruits("mango", 1), Fruits("Guava", 2), Fruits("mango", 2), Fruits("guava", 2))

答案 1 :(得分:0)

从spark 2.3开始,数据框的列名称应与案例类参数的名称匹配。对于以前的版本(2.1.1),唯一的约束是相同数量的列/参数。 您可以通过以下方式创建水果序列而不是元组:

case class Fruits(name: String, quantity: Int)

val source = Array(Fruits("mango", 1), Fruits("Guava", 2), Fruits("mango", 2), Fruits("guava", 2))
val sourceDS = spark.createDataset(source)
val resultDS = sourceDS.filter(_.name == "mango").filter(_.quantity

答案 2 :(得分:0)

我认为@ user11589880的答案会起作用,但是我可以选择一种替代方法:

val sourceDS = Seq(Fruit("Mango", 1), Fruit("Guava", 2)).toDF

sourceDS的类型将为Dataset[Fruit]