按变量索引时SD []的性能问题

时间:2019-06-01 17:28:54

标签: r data.table

我正在使用R中的data.tables。数据按id具有多个记录,并且我尝试使用.SD data.table选项为每个人查找第n条记录。如果我将N指定为整数,则立即创建新的data.table。但是,如果N是变量(可能在函数中),则代码花费的时间大约是700倍。对于大数据集,这是一个问题。我想知道这是否是已知问题,是否有任何方法可以加快速度?

library(data.table)
library(microbenchmark)

set.seed(102938)

dd <- data.table(id = rep(1:10000, each = 10), seq = seq(1:10))
setkey(dd, id)

N <- 2
microbenchmark(dd[,.SD[2], keyby = id],
               dd[,.SD[N], keyby = id],
               times = 5)
#> Unit: microseconds
#>                      expr        min         lq       mean     median
#>  dd[, .SD[2], keyby = id]    886.269   1584.513   2904.497   1851.356
#>  dd[, .SD[N], keyby = id] 770822.875 810131.784 870418.622 903956.708
#>          uq        max neval
#>    1997.134   8203.214     5
#>  912223.026 954958.718     5

1 个答案:

答案 0 :(得分:2)

最好使用行索引(.I)而不是.SD

进行子设置。
dd[dd[, .I[N], keyby = id]$V1]

-基准

microbenchmark(dd[,.SD[2], keyby = id],
                dd[dd[,.I[N], keyby = id]$V1],
                times = 5)
#Unit: milliseconds
#                           expr      min       lq     mean   median       uq      max neval
#       dd[, .SD[2], keyby = id] 1.253097 1.343862 2.796684 1.352426 1.400910 8.633126     5
# dd[dd[, .I[N], keyby = id]$V1] 5.082752 5.383201 5.991076 5.866084 6.488898 7.134443     5

有了.I,它的改进要比.SD好得多,但是仍然会影响性能,这是在全局环境中寻找变量'N'的搜索时间


在内部,优化在时间安排中起作用。如果使用,所有优化都使用选项0

为FALSE
options(datatable.optimize = 0L)
microbenchmark(dd[,.SD[2], keyby = id],
             dd[dd[,.I[N], keyby = id]$V1],
             times = 5)
#Unit: milliseconds
#                          expr        min         lq      mean     median         uq        max neval
#      dd[, .SD[2], keyby = id] 660.612463 701.573252 761.51163 776.780341 785.940196 882.651875     5
#dd[dd[, .I[N], keyby = id]$V1]   3.860492   4.140469   5.05796   4.762518   5.342907   7.183416     5

现在,.I方法更快

更改为1

options(datatable.optimize = 1L)
microbenchmark(dd[,.SD[2], keyby = id],
                 dd[dd[,.I[N], keyby = id]$V1],
                 times = 5)
#Unit: milliseconds
#                           expr      min       lq     mean   median       uq      max neval
#       dd[, .SD[2], keyby = id] 4.934761 5.109478 5.496449 5.414477 5.868185 6.155342     5
# dd[dd[, .I[N], keyby = id]$V1] 3.923388 3.966413 4.325268 4.379745 4.494367 4.862426     5

使用2-gforce优化-默认方法

options(datatable.optimize = 2L)
microbenchmark(dd[,.SD[2], keyby = id],
                 dd[dd[,.I[N], keyby = id]$V1],
                 times = 5)
#Unit: milliseconds
#                           expr      min       lq     mean   median       uq      max neval
#       dd[, .SD[2], keyby = id] 1.113463 1.179071 1.245787 1.205013 1.337216 1.394174     5
# dd[dd[, .I[N], keyby = id]$V1] 4.339619 4.523917 4.774221 4.833648 5.017755 5.156166     5

引擎盖优化可以通过verbose = TRUE

进行检查
out1 <- dd[,.SD[2], keyby = id, verbose = TRUE]
#Finding groups using forderv ... 0.017s elapsed (0.020s cpu) 
#Finding group sizes from the positions (can be avoided to save RAM) ... 0.022s #elapsed (0.131s cpu) 
#lapply optimization changed j from '.SD[2]' to 'list(seq[2])'
#GForce optimized j to 'list(`g[`(seq, 2))'
#Making each group and running j (GForce TRUE) ... 0.027s elapsed (0.159s cpu) 

out2 <- dd[dd[,.I[N], keyby = id, verbose = TRUE]$V1, verbose = TRUE]
#Detected that j uses these columns: <none> 
#Finding groups using forderv ... 0.023s elapsed (0.026s cpu) 
#Finding group sizes from the positions (can be avoided to save RAM) ... 0.022s #elapsed (0.128s cpu) 
#lapply optimization is on, j unchanged as '.I[N]'
#GForce is on, left j unchanged
#Old mean optimization is on, left j unchanged.
#Making each group and running j (GForce FALSE) ... 
#  memcpy contiguous groups took 0.052s for 10000 groups
#  eval(j) took 0.065s for 10000 calls   #######
#0.068s elapsed (0.388s cpu)