我将sklearn与numpy数组配合使用。 我有2个数组(x,y),它们应该是:
test_size=0.2
train_size=0.8
这是我当前的代码:
def predict():
sample_data = pd.read_csv("includes\\csv.csv")
x = np.array(sample_data["day"])
y = np.array(sample_data["balance"])
x = x.reshape(1, -1)
y = y.reshape(1, -1)
print(x)
print(y)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
clf = LinearRegression()
clf.fit(x_train, y_train)
clf.score(x_test, y_test)
错误是:
ValueError: With n_samples=1, test_size=0.2 and train_size=None, the resulting train set will be empty. Adjust any of the aforementioned parameters.
,它出现在行中:
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
为什么会出现任何想法?
答案 0 :(得分:1)
我有这个问题。检查库“ scikit-learn”。 sklearn与scikt-learn的0.20.0+版本有关,请尝试这样做:
Windows:pip uninstall scikit-learn
Linux:sudo python36 -m pip uninstall scikit-learn
并安装:
Windows:pip install scikit-learn==0.19.1
Linux:sudo python36 -m pip install scikit-learn==0.19.1