data = data.frame("id"=c(1,2,3,4,5,6,7,8,9,10),
"group"=c(1,1,2,1,2,2,2,2,1,2),
"type"=c(1,1,2,3,2,2,3,3,3,1),
"score1"=c(sample(1:4,10,r=T)),
"score2"=c(sample(1:4,10,r=T)),
"score3"=c(sample(1:4,10,r=T)),
"score4"=c(sample(1:4,10,r=T)),
"score5"=c(sample(1:4,10,r=T)),
"weight1"=c(173,109,136,189,186,146,173,102,178,174),
"weight2"=c(147,187,125,126,120,165,142,129,144,197),
"weight3"=c(103,192,102,159,128,179,195,193,135,145),
"weight4"=c(114,182,199,101,111,116,198,123,119,181),
"weight5"=c(159,125,104,171,166,154,197,124,180,154))
这是我的数据的一个示例。我想要分数变量的人口加权计数,如下所示:
count(data, score1, wt = weight1)
count(data, score2, wt = weight2)
count(data, score3, wt = weight3)
count(data, score4, wt = weight4)
count(data, score5, wt = weight5)
但是我的目标是创建一个类型的循环,这样我可以对得分1-5的“组”和“类型”的每种组合进行此操作,并将它们存储在单独的向量中,以使
vec1 = weighted score variable for scores1-5 for group = 1 and type = 1
vec2 = weighted score variable for scores1-5 for group = 1 and type = 2
vec3 = weighted score variable for scores1-5 for group = 1 and type = 3
以此类推。
答案 0 :(得分:1)
我们可以使用map
遍历每个相应的“得分”,“权重”并获得count
library(tidyverse)
out <- map(1:5, ~
data %>%
select(group, type, matches(as.character(.x))) %>%
group_by(group, type) %>%
count(!! rlang::sym(str_c("score", .x)),
wt = !! rlang::sym(str_c("weight", .x))))
输出将是频率list
count
的{{1}}。如果我们要创建一个数据,请将tibble
与map_df
答案 1 :(得分:0)
我不确定确切了解您的预期输出是什么,但是您可能想尝试这样的事情:
for (i in 1:max(data[["group"]])) { #looping through groups
weighted_score <- ... ## create your wheighted score for group i here
name <- paste("vec",i,sep="")
assign(name,weighted_score)
}