After applying the group by I got a data frame like this
indi_percentage
publishedAt status
2019-05-29 Guidelines reason 14.065392
accepted 0.555213
unfit 0.246761
repeat 0.123381
2019-05-30 Guidelines reason 11.217712
accepted 0.073801
unfit 0.221402
no action 90.943396
The shape of the data frame is 8 X 1. The indi_percentage is a column. Rest are index. I want to transform this data frame in such a way that on each day, values of status are columns and indi_percentage are the values these columns. Here is a sample output
publishedAt Guidelines reason accepted
2019-05-29 14.065392 0.555213
How can we implement this?
答案 0 :(得分:2)
reset_index()
and df.pivot_table()
assuming df
is the name after grouby()
df.reset_index().pivot_table(index='publishedAt',columns='status',values='indi_percentage')
status Guidelines reason accepted no action repeat unfit
publishedAt
2019-05-29 14.065392 0.555213 NaN 0.123381 0.246761
2019-05-30 11.217712 0.073801 90.943396 NaN 0.221402