假设
.*
实际输出:
它仅显示最后一个输出,而不是每个值。像这样,如果有N个值,则csv必须将所有N个值都存储在彼此之间一个
A='First'
B='Random'
C='Degree'
D='Largest'
A='Second'
B='Odd'
C='Inclined'
D='Maximum'
A='Third'
B='Even'
C='Steep'
D='Smallest'
A='Fourth'
B='Prime'
C='Gradient'
D='Minimum'
c = ['Group', 'Number', 'Angle', 'Max value']
df = pd.DataFrame([[A, B, C, D]], columns=c)
print (df)
#to csv
df.to_csv('Output.csv', encoding='utf-8', index=False)
预期输出:
答案 0 :(得分:1)
每次重新定义变量时,您都将覆盖A B C D
变量。您应该将它们添加到嵌套列表或使用循环:
data = [
['First', 'Random', 'Degree', 'Largest'],
['Second', 'Odd', 'Inclined', 'Maximum'],
['Third', 'Even', 'Steep', 'Smallest'],
['Fourth', 'Prime', 'Gradient', 'Minimum']
]
df = pd.DataFrame(data, columns=c)
或者....
A = ['First', 'Random', 'Degree', 'Largest']
B = ['Second', 'Odd', 'Inclined', 'Maximum']
C = ['Third', 'Even', 'Steep', 'Smallest']
D = ['Fourth', 'Prime', 'Gradient', 'Minimum']
df = pd.DataFrame([A, B, C, D], columns=c]
答案 1 :(得分:1)
您可以使用以下代码,
import pandas as pd
data = [
['First', 'Random', 'Degree', 'Largest'],
['Second', 'Odd', 'Inclined', 'Maximum'],
['Third', 'Even', 'Steep', 'Smallest'],
['Fourth', 'Prime', 'Gradient', 'Minimum']
]
c = ['Group', 'Number', 'Angle', 'Max value']
df = pd.DataFrame(data, columns=c)
print (df)
df.to_csv('Output.csv', encoding='utf-8', index=False)
,输出为
您还获得了CSV文件
答案 2 :(得分:1)
您每次都覆盖变量A, B, C, D
,所以最后in只包含您上次迭代的值。
您的变量的构造有点直观,但是以下情况适用于您:
A = ['First', 'Second', 'Third', 'Fourth']
B = ['Random', 'Odd', 'Even', 'Prime']
C = ['Degree', 'Inclined', 'Steep', 'Gradient']
D = ['Largest', 'Maximum', 'Smallest', 'Minimum']
c = ['Group', 'Number', 'Angle', 'Max value']
df = pd.DataFrame(data =[A, B, C, D])
df = df.T
df.columns = c
print (df)
#to csv
df.to_csv('Output.csv', encoding='utf-8', index=False)
Group Number Angle Max value
0 First Random Degree Largest
1 Second Odd Inclined Maximum
2 Third Even Steep Smallest
3 Fourth Prime Gradient Minimum
答案 3 :(得分:1)
您应遵循以下步骤:
首先列出所有列,如下所示:
A = ['First', 'Random', 'Degree', 'Largest']
B = ['Second', 'Odd', 'Inclined', 'Maximum']
C = ['Third', 'Even', 'Steep', 'Smallest']
D = ['Fourth', 'Prime', 'Gradient', 'Minimum']
然后
c = ['Group', 'Number', 'Angle', 'Max value']
df = pd.DataFrame([A, B, C, D], columns=c)
print (df)
#to csv
df.to_csv('Output.csv', encoding='utf-8', index=False)
输出:
Group Number Angle Max value
0 First Random Degree Largest
1 Second Odd Inclined Maximum
2 Third Even Steep Smallest
3 Fourth Prime Gradient Minimum
答案 4 :(得分:1)
尝试此代码非常简单
dictionary = {'Group':['First','Second','Third','Fourth'],
'Number' :['Random','Odd','Even','Prime'],
'Angle':['Degree','Inclined','Steep','Gradient'],
'Max value' :['Largest','Maximum','Smallest','Minimum']}
df = pd.DataFrame(dictionary)
print (df)
#to csv
df.to_csv('Output.csv', encoding='utf-8', index=False)