我想让张量通过卷积2层。即使将numpy数组转换为张量,我也遇到类型错误,因此我无法执行它。
我尝试使用tf.convert_to_tensor()解决此问题。没用
import numpy as np
import tensorflow as tf
class Generator():
def __init__(self):
self.conv1 = nn.Conv2d(1, 28, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=0, padding=1)
self.fc1 = nn.Linear(100, 10)
self.fc2 = nn.Linear(10, 5)
def forward_pass(self, x): #Why do we pass the object itself in every method?
x = self.conv1(x)
print(x)
x = self.pool1(x)
print(x)
x = self.fc1(x)
print(x)
x = self.fc2(x)
print(x)
return x
arr = tf.convert_to_tensor(np.random.random((3,28,28)))
gen = Generator()
gen.forward_pass(arr)
错误消息-
TypeError Traceback (most recent call last)
<ipython-input-31-9fa8e764dcdb> in <module>()
1 gen = Generator()
----> 2 gen.forward_pass(arr)
2 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in forward(self, input)
336 _pair(0), self.dilation, self.groups)
337 return F.conv2d(input, self.weight, self.bias, self.stride,
--> 338 self.padding, self.dilation, self.groups)
339
340
TypeError: conv2d(): argument 'input' (position 1) must be Tensor, not Tensor
答案 0 :(得分:0)
您正试图将TensorFlow张量传递给PyTorch函数。 TensorFlow和PyTorch是具有不同数据结构的单独项目,通常不能以这种方式互换使用。
要将NumPy数组转换为PyTorch张量,可以使用:
if decAge > 0.5 :
age = int(age) + 1
else:
age = int(age)