我有一个这样的数据框,只显示了两列,但是原始数据框中有很多列
data = [(("ID1", 3, 5)), (("ID2", 4, 12)), (("ID3", 8, 3))]
df = spark.createDataFrame(data, ["ID", "colA", "colB"])
df.show()
+---+----+----+
| ID|colA|colB|
+---+----+----+
|ID1| 3| 5|
|ID2| 4| 12|
|ID3| 8| 3|
+---+----+----+
我想提取每行的列名,该列名具有最大值。因此,预期的输出是这样的
+---+----+----+-------+
| ID|colA|colB|Max_col|
+---+----+----+-------+
|ID1| 3| 5| colB|
|ID2| 4| 12| colB|
|ID3| 8| 3| colA|
+---+----+----+-------+
对于平局,如果colA和colB具有相同的值,请选择第一列。
如何在pyspark中实现这一目标
答案 0 :(得分:1)
尝试以下操作:
from pyspark.sql import functions as F
data = [(("ID1", 3, 5)), (("ID2", 4, 12)), (("ID3", 8, 3))]
df = spark.createDataFrame(data, ["ID", "colA", "colB"])
df.withColumn('max_col',
F.when(F.col('colA') > F.col('colB'), 'colA').
otherwise('colB')).show()
收益:
+---+----+----+-------+
| ID|colA|colB|max_col|
+---+----+----+-------+
|ID1| 3| 5| colB|
|ID2| 4| 12| colB|
|ID3| 8| 3| colA|
+---+----+----+-------+
答案 1 :(得分:1)
您可以在每一行上使用UDF
进行逐行计算,并使用struct
将多列传递给udf。希望这会有所帮助。
from pyspark.sql import functions as F
from pyspark.sql.types import IntegerType
data = [(("ID1", 3, 5,78)), (("ID2", 4, 12,45)), (("ID3", 8, 3,67))]
df = spark.createDataFrame(data, ["ID", "colA", "colB","colC"])
df.show()
+---+----+----+----+
| ID|colA|colB|colC|
+---+----+----+----+
|ID1| 3| 5| 78|
|ID2| 4| 12| 45|
|ID3| 8| 3| 67|
+---+----+----+----+
cols = df.columns
maxcol = F.udf(lambda row: max(row), IntegerType())
maxDF = df.withColumn("maxval", maxcol(F.struct([df[x] for x in df.columns[1:]])))
maxDF.show()
+---+----+----+----+-------+
|ID |colA|colB|colC|Max_col|
+---+----+----+----+-------+
|ID1|3 |5 |78 |78 |
|ID2|4 |12 |45 |45 |
|ID3|8 |3 |67 |67 |
+---+----+----+----+-------+
答案 2 :(得分:0)
有多个选项可以实现此目的。我是一个示例,可以为您提供休息提示-
from pyspark.sql import functions as F
from pyspark.sql.window import Window as W
from pyspark.sql import types as T
data = [(("ID1", 3, 5)), (("ID2", 4, 12)), (("ID3", 8, 3))]
df = spark.createDataFrame(data, ["ID", "colA", "colB"])
df.show()
+---+----+----+
| ID|colA|colB|
+---+----+----+
|ID1| 3| 5|
|ID2| 4| 12|
|ID3| 8| 3|
+---+----+----+
#Below F.array creates an array of column name and value pair like [['colA', 3], ['colB', 5]] then F.explode break this array into rows like different column and value pair should be in different rows
df = df.withColumn(
"max_val",
F.explode(
F.array([
F.array([F.lit(cl), F.col(cl)]) for cl in df.columns[1:]
])
)
)
df.show()
+---+----+----+----------+
| ID|colA|colB| max_val|
+---+----+----+----------+
|ID1| 3| 5| [colA, 3]|
|ID1| 3| 5| [colB, 5]|
|ID2| 4| 12| [colA, 4]|
|ID2| 4| 12|[colB, 12]|
|ID3| 8| 3| [colA, 8]|
|ID3| 8| 3| [colB, 3]|
+---+----+----+----------+
#Then select columns so that column name and value should be in different columns
df = df.select(
"ID",
"colA",
"colB",
F.col("max_val").getItem(0).alias("col_name"),
F.col("max_val").getItem(1).cast(T.IntegerType()).alias("col_value"),
)
df.show()
+---+----+----+--------+---------+
| ID|colA|colB|col_name|col_value|
+---+----+----+--------+---------+
|ID1| 3| 5| colA| 3|
|ID1| 3| 5| colB| 5|
|ID2| 4| 12| colA| 4|
|ID2| 4| 12| colB| 12|
|ID3| 8| 3| colA| 8|
|ID3| 8| 3| colB| 3|
+---+----+----+--------+---------+
# Rank column values based on ID in desc order
df = df.withColumn(
"rank",
F.rank().over(W.partitionBy("ID").orderBy(F.col("col_value").desc()))
)
df.show()
+---+----+----+--------+---------+----+
| ID|colA|colB|col_name|col_value|rank|
+---+----+----+--------+---------+----+
|ID2| 4| 12| colB| 12| 1|
|ID2| 4| 12| colA| 4| 2|
|ID3| 8| 3| colA| 8| 1|
|ID3| 8| 3| colB| 3| 2|
|ID1| 3| 5| colB| 5| 1|
|ID1| 3| 5| colA| 3| 2|
+---+----+----+--------+---------+----+
#Finally Filter rank = 1 as max value have rank 1 because we ranked desc value
df.where("rank=1").show()
+---+----+----+--------+---------+----+
| ID|colA|colB|col_name|col_value|rank|
+---+----+----+--------+---------+----+
|ID2| 4| 12| colB| 12| 1|
|ID3| 8| 3| colA| 8| 1|
|ID1| 3| 5| colB| 5| 1|
+---+----+----+--------+---------+----+
其他选项--
ID
进行分组,取最大值col_value
。然后加入上一个df。答案 3 :(得分:0)
您可以使用RDD API添加新列:
df.rdd.map(lambda r: r.asDict())\
.map(lambda r: Row(Max_col=max([i for i in r.items() if i[0] != 'ID'],
key=lambda kv: kv[1])[0], **r) )\
.toDF()
结果:
+---+-------+----+----+
| ID|Max_col|colA|colB|
+---+-------+----+----+
|ID1| colB| 3| 5|
|ID2| colB| 4| 12|
|ID3| colA| 8| 3|
+---+-------+----+----+
答案 4 :(得分:0)
扩展Suresh的工作。...返回适当的列名
from pyspark.sql import functions as f
from pyspark.sql.types import IntegerType, StringType
import numpy as np
data = [(("ID1", 3, 5,78)), (("ID2", 4, 12,45)), (("ID3", 68, 3,67))]
df = spark.createDataFrame(data, ["ID", "colA", "colB","colC"])
df.show()
cols = df.columns
maxcol = f.udf(lambda row: cols[row.index(max(row)) +1], StringType())
maxDF = df.withColumn("Max_col", maxcol(f.struct([df[x] for x in df.columns[1:]])))
maxDF.show(truncate=False)
+---+----+----+----+------+
|ID |colA|colB|colC|Max_col|
+---+----+----+----+------+
|ID1|3 |5 |78 |colC |
|ID2|4 |12 |45 |colC |
|ID3|68 |3 |67 |colA |
+---+----+----+----+------+