我想使用for循环和计数对每三行进行线性回归,但由于与线性回归的输入(x&y)混淆,我无法做到。
这是代码:
from sklearn.metrics import mean_squared_error, r2_score
import statsmodels.api as sm
import numpy as np
year=data_['Year']
value=data_['Value']
count=0
for a,b in zip(year,value):
print(a,b)
count = count+1[input][1]
window_type='rolling'
if count%3 == 0 :
x=data_.loc[0:3,['Year']]
y=data_.loc[0:3,['Value']]
reg=linear_model.LinearRegression()
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size = 0.2 ,random_state=3)
reg.fit(x,y)
y4=4*reg.coef_ + reg.intercept_
print("Equation : 4 *", reg.coef_, "+", reg.intercept_)
print("Y4 : ", y4)
print("====")
实际结果:
1 6.262008
2 5.795994
3 5.082562
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 : [[-96.96783982]]
====
1 285.433511
2 260.43560099999996
3 238.71312400000002
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 : [[-96.96783982]]
====
1 2.595145
2 2.508278
3 2.67997
Equation : 4 * [[-76.71615936]] + [209.89679764]
Y4 : [[-96.96783982]]
====
我想要的输出是: 每三行得出不同的Y4
请帮助我解决此问题。
答案 0 :(得分:0)
如果我正确理解了您的问题,则可以先查阅'sklearn.linear_model.LinearRegression.fit'的正式文档
确保您的输入reg.fit(X, y)
是numpy.ndarray类型。明确一点,
X = np.array([1, 2, 3]).reshape(3,1)
y = np.array([6.262008, 5.795994, 5.082562])
reg=linear_model.LinearRegression()
reg.fit(X,y)
y4=4*reg.coef_ + reg.intercept_
print(np.squeeze(y4))
应该返回,
4.534075333333335