我有这个数据框
+---+----+---+
| A| B| C|
+---+----+---+
| 0|null| 1|
| 1| 3.0| 0|
| 2| 7.0| 0|
| 3|null| 1|
| 4| 4.0| 0|
| 5| 3.0| 0|
| 6|null| 1|
| 7|null| 1|
| 8|null| 1|
| 9| 5.0| 0|
| 10| 2.0| 0|
| 11|null| 1|
+---+----+---+
我需要做的是从C列开始累积值的总和,直到下一个值为零,然后重置累积总和,直到完成所有行为止。
预期输出:
+---+----+---+----+
| A| B| C| D|
+---+----+---+----+
| 0|null| 1| 1|
| 1| 3.0| 0| 0|
| 2| 7.0| 0| 0|
| 3|null| 1| 1|
| 4| 4.0| 0| 0|
| 5| 3.0| 0| 0|
| 6|null| 1| 1|
| 7|null| 1| 2|
| 8|null| 1| 3|
| 9| 5.0| 0| 0|
| 10| 2.0| 0| 0|
| 11|null| 1| 1|
+---+----+---+----+
我已经使用过Window().rangeBetween
函数并达到了期望的输出,但是问题是您无法定义固定的窗口范围,因为DataFrame可以连续五次使用数字{{1} },有时只能是两个,等等。
我的问题与此Pyspark : Cumulative Sum with reset condition非常相似,但没有人回答。
要重现数据帧:
1
答案 0 :(得分:1)
创建一个临时列(grp
),该临时列在每次C
等于0
(重置条件)时递增一个计数器,并将其用作您的累加总和的分区列
import pyspark.sql.functions as f
from pyspark.sql import Window
x.withColumn(
"grp",
f.sum((f.col("C") == 0).cast("int")).over(Window.orderBy("A"))
).withColumn(
"D",
f.sum(f.col("C")).over(Window.partitionBy("grp").orderBy("A"))
).drop("grp").show()
#+---+----+---+---+
#| A| B| C| D|
#+---+----+---+---+
#| 0|null| 1| 1|
#| 1| 3.0| 0| 0|
#| 2| 7.0| 0| 0|
#| 3|null| 1| 1|
#| 4| 4.0| 0| 0|
#| 5| 3.0| 0| 0|
#| 6|null| 1| 1|
#| 7|null| 1| 2|
#| 8|null| 1| 3|
#| 9| 5.0| 0| 0|
#| 10| 2.0| 0| 0|
#| 11|null| 1| 1|
#+---+----+---+---+