我在Google ML Cloud中训练Keras模型时遇到问题。将数据发送到Google Cloud时卡住了。
我遵循了本教程:https://tensorflow.rstudio.com/tools/cloudml/articles/training.html 这是我的Rstudio配置:
$citation
To cite RStudio in publications use:
RStudio Team (2018). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
http://www.rstudio.com/.
A BibTeX entry for LaTeX users is
@Manual{,
title = {RStudio: Integrated Development Environment for R},
author = {{RStudio Team}},
organization = {RStudio, Inc.},
address = {Boston, MA},
year = {2018},
url = {http://www.rstudio.com/},
}
$mode
[1] "desktop"
$version
[1] ‘1.2.1335’
这是我的train.R
代码:
library(keras)
mnist <- dataset_mnist()
train_images <- mnist$train$x
train_labels <- mnist$train$y
test_images <- mnist$test$x
test_labels <- mnist$test$y
train_images <- array_reshape(train_images, c(nrow(train_images), 28*28))
test_images <- array_reshape(test_images, c(nrow(test_images), 28*28))
train_labels <- to_categorical(train_labels, 10)
test_labels <- to_categorical(test_labels, 10)
model <- keras_model_sequential()
model %>% layer_dense(units=32, activation='relu', input_shape=c(28*28)) %>% layer_dense(units=10, activation='softmax')
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c('accuracy')
)
model %>% fit(
train_images, train_labels,
epochs = 5, batch_size = 128
)
现在。当我尝试像这样在gogle云中训练它时:
gcloud_install()
#gcloud_init() <- it runs automatically after install
gcloud_install()
job <- cloudml_train('train.R')
我得到以下结果:
Submitting training job to CloudML...
卡住了。我等了15分钟-还是一无所有。我确实尝试过重新安装gcloud-什么也没有。我在做什么错了?
谢谢!
编辑1 我还应该提到,我在Google云控制台中看不到任何日志