使用Python从REST API提取大型分页数据

时间:2019-05-30 00:54:51

标签: python json python-3.x rest api

我正在从rest API中提取数据。问题在于数据大小巨大,因此响应分页。首先,读取有多少页数据,然后为每个页面重复请求,从而解决了这个问题。唯一的问题是页面总数约为1.5K,这需要大量时间才能实际获取并附加到CSV。有没有更快的解决方法?

这是我定位的端点:https://developer.keeptruckin.com/reference#get-logs

import requests
import json
import csv
url='https://api.keeptruckin.com/v1/logs?start_date=2019-03-09'
header={'x-api-key':'API KEY HERE'}
r=requests.get(url,headers=header)
result=r.json()
result = json.loads(r.text)
num_pages=result['pagination']['total']
print(num_pages)
for page in range (2,num_pages+1):
    r=requests.get(url,headers=header, params={'page_no': page})
    result=r.json()
    result = json.loads(r.text)
    csvheader=['First Name','Last Name','Date','Time','Type','Location']
    with open('myfile.csv', 'a+', newline='') as csvfile:
        writer = csv.writer(csvfile, csv.QUOTE_ALL)
        ##writer.writerow(csvheader)
        for log in result['logs']:
            username = log['log']['driver']['username']
            first_name=log['log']['driver']['first_name']
            last_name=log['log']['driver']['last_name']
            for event in log['log']['events']:
                start_time = event['event']['start_time']
                date, time = start_time.split('T')
                event_type = event['event']['type']
                location = event['event']['location']
                if not location:
                    location = "N/A"
                if (username=="barmx1045"  or username=="aposx001" or username=="mcqkl002" or username=="coudx014" or username=="ruscx013" or username=="loumx001" or username=="robkr002" or username=="masgx009"or username=="coxed001" or username=="mcamx009" or username=="linmx024" or username=="woldj002" or username=="fosbl004"):
                    writer.writerow((first_name, last_name,date, time, event_type, location))

1 个答案:

答案 0 :(得分:2)

第一个选项:大多数分页响应的页面大小都可以编辑。 https://developer.keeptruckin.com/reference#pagination 尝试将per_page字段更新为100,而不是默认为每次拉取25。

第二个选择:可能您可以通过使用多个线程/进程并拆分每个页面负责的部分来一次拉出多个页面。