我的数据是:
>>> prices = pandas.DataFrame(
{"StkCode":["StockA","StockA","StockA","StockA","StockA","StockB","StockB","StockB","StockB","StockB","StockC","StockC","StockC","StockC","StockC",],
"Price":[1035.23, 1032.47, 1011.78, 1010.59, 1016.03, 1007.95, 1022.75, 1021.52, 1026.11, 1027.04, 1030.58, 1030.42, 1036.24, 1015.00, 1015.20]}
)
哪个给:
Price StkCode
0 1035.23 StockA
1 1032.47 StockA
2 1011.78 StockA
3 1010.59 StockA
4 1016.03 StockA
5 1007.95 StockB
6 1022.75 StockB
7 1021.52 StockB
8 1026.11 StockB
9 1027.04 StockB
10 1030.58 StockC
11 1030.42 StockC
12 1036.24 StockC
13 1015.00 StockC
14 1015.20 StockC
然后,我打电话给
>>> prices["Return"] = prices.groupby("StkCode")["Price"].pct_change(1)
我希望:
Price StkCode Return
0 1035.23 StockA NaN
1 1032.47 StockA -0.002666
2 1011.78 StockA -0.020039
3 1010.59 StockA -0.001176
4 1016.03 StockA 0.005383
5 1007.95 StockB NaN
6 1022.75 StockB 0.014683
7 1021.52 StockB -0.001203
8 1026.11 StockB 0.004493
9 1027.04 StockB 0.000906
10 1030.58 StockC NaN
11 1030.42 StockC -0.000155
12 1036.24 StockC 0.005648
13 1015.00 StockC -0.020497
14 1015.20 StockC 0.000197
但是,我实际上得到了:
Price StkCode Return
0 1035.23 StockA NaN
1 1032.47 StockA -0.002666
2 1011.78 StockA -0.020039
3 1010.59 StockA -0.001176
4 1016.03 StockA 0.005383
5 1007.95 StockB -0.007953
6 1022.75 StockB 0.014683
7 1021.52 StockB -0.001203
8 1026.11 StockB 0.004493
9 1027.04 StockB 0.000906
10 1030.58 StockC 0.003447
11 1030.42 StockC -0.000155
12 1036.24 StockC 0.005648
13 1015.00 StockC -0.020497
14 1015.20 StockC 0.000197
似乎正在为StockB和StockC的第一个实例计算收益。
我正在使用Python 2.7。我的代码是否有问题,无视groupby?
谢谢!
答案 0 :(得分:0)
DataFrame的loc方法将正确应用这些值:
prices.loc[:, 'Return'] = prices.groupby("StkCode")["Price"].pct_change(1)
Price StkCode Return
0 1035.23 StockA NaN
1 1032.47 StockA -0.002666
2 1011.78 StockA -0.020039
3 1010.59 StockA -0.001176
4 1016.03 StockA 0.005383
5 1007.95 StockB NaN
6 1022.75 StockB 0.014683
7 1021.52 StockB -0.001203
8 1026.11 StockB 0.004493
9 1027.04 StockB 0.000906
10 1030.58 StockC NaN
11 1030.42 StockC -0.000155
12 1036.24 StockC 0.005648
13 1015.00 StockC -0.020497
14 1015.20 StockC 0.000197