我刚刚创建了一个简单的模型,当我运行代码时,它应该为每个时期更新循环并更新函数的权重。但是,它可以运行,但是在打印pytorch版本后不会继续。
您可以检查我的代码,我的循环没发现任何问题,但不会更新权重。我缺少一些重要的信息以使网络继续运行吗?
# x is a tensor of shape [n, 3] containing the positions of the vertices that
x = torch.from_numpy(common.loadpointcloud().astype(np.float32))
# t is a tensor of shape [n, 3] containing a set of nicely distributed samples in the unit cube
v, f = test.unit_cube()
t = torch.from_numpy(pcu.sample_mesh_lloyd(v,f,x.shape[0]).astype(np.float32)) # sample randomly a point cloud (cube for now?)
# The model is a simple fully connected network mapping a 3D parameter point to 3D
phi = common.MLP(in_dim=3, out_dim=3)
phi.cuda()
# Eps is 1/lambda and max_iters is the maximum number of Sinkhorn iterations to do
emd_loss_fun = SinkhornLoss(eps=1e-3, max_iters=x.shape[0],
stop_thresh=1e-3, return_transport_matrix=True)
mse_loss_fun = torch.nn.MSELoss()
# Adam optimizer at first
optimizer = torch.optim.Adam(phi.parameters(), lr= 10e-3)
fit_start_time = time.time()
for epoch in range(100):
optimizer.zero_grad()
# Do the forward pass of the neural net, evaluating the function at the parametric points
y = phi(t)
# Compute the Sinkhorn divergence between the reconstruction*(using the francis library) and the target
# NOTE: The Sinkhorn function expects a batch of b point sets (i.e. tensors of shape [b, n, 3])
# since we only have 1, we unsqueeze so x and y have dimension [1, n, 3]
with torch.no_grad():
_, P = emd_loss_fun(phi(t).unsqueeze(0), x.unsqueeze(0))
# Project the transport matrix onto the space of permutation matrices and compute the L-2 loss
# between the permuted points
loss = mse_loss_fun(y[P.squeeze().max(0)[1], :], x)
# loss = mse_loss_fun(P.squeeze() @ y, x) # Use the transport matrix directly
# Take an optimizer step
loss.backward()
optimizer.step()
print("Epoch %d, loss = %f" % (epoch, loss.item()))
fit_end_time = time.time()
它应该运行并创建一个将t映射到x的函数。但是,该程序仅显示以下内容:
python3 main2.py
1.1.0
而且我什么也做不了,甚至无法ctrl + c
停止程序。