带有偏斜数据集的最后几个映射器需要很长时间才能在groupby hive映射上运行

时间:2019-05-29 05:26:04

标签: hadoop hive mapreduce hiveql skew

我正在对3.5 TB数据集运行一个简单的groupby查询,如下所示。我知道数据集中存在歪斜。 “ partno”列贡献了95%的数据集,因此,整个工作需要9个小时才能完成,而最后几个mapper花费的时间最长。

您能帮我吗,我需要对其进行优化以有效地解决问题。基本上,我需要帮助来解决groupby和join方面的偏斜数据。

select cntry,partno
percentile_approx(part_pr,0.999) as part_pr_cutoff
from sourceTable 
GROUP BY cntry,partno;

下面是我在hql文件中使用的hive.properties。

SET hive.exec.compress.intermediate=true;
SET hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET hive.intermediate.compression.type=BLOCK;
SET hive.exec.compress.output=true;
SET mapreduce.output.fileoutputformat.compress=true;
SET mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET mapreduce.output.fileoutputformat.compress.type=BLOCK;
SET hive.auto.convert.join=true;
SET hive.auto.convert.join.noconditionaltask=true;
SET hive.auto.convert.join.noconditionaltask.size=10000000;
SET hive.groupby.skewindata=true;
SET hive.optimize.skewjoin.compiletime=true;
SET hive.optimize.skewjoin=true;
SET hive.optimize.bucketmapjoin=true;
SET hive.exec.parallel=true;
SET hive.cbo.enable=true;
SET hive.stats.autogather=true;
SET hive.compute.query.using.stats=true;
SET hive.stats.fetch.column.stats=true;
SET hive.stats.fetch.partition.stats=true;
SET hive.vectorized.execution.enabled=true;
SET hive.vectorized.execution.reduce.enabled=true;
SET hive.optimize.index.filter=true;
SET hive.optimize.ppd=true;
SET hive.mapjoin.smalltable.filesize=25000000;
SET hive.exec.dynamic.partition=true;
SET hive.exec.dynamic.partition.mode=nonstrict;
SET hive.exec.max.dynamic.partitions.pernode=1000;
SET mapreduce.reduce.memory.mb=10240;
SET mapreduce.reduce.java.opts=-Xmx9216m;
SET mapreduce.map.memory.mb=10240;
SET mapreduce.map.java.opts=-Xmx9216m;
SET mapreduce.task.io.sort.mb=1536;
SET hive.optimize.groupby=true;
SET hive.groupby.orderby.position.alias=true;
SET hive.multigroupby.singlereducer=true;
SET hive.optimize.point.lookup=true;
SET hive.optimize.point.lookup.min=true;
SET hive.merge.mapfiles=true;
SET hive.merge.smallfiles.avgsize=128000000;
SET hive.merge.size.per.task=268435456;
SET hive.map.aggr=true;
SET hive.optimize.distinct.rewrite=true;
SET mapreduce.map.speculative=false;
set hive.fetch.task.conversion = more;
set hive.fetch.task.aggr=true;
set hive.fetch.task.conversion.threshold=1024000000;

0 个答案:

没有答案