我是Python multiprocessing
模块的新手,可以使用Jupyter笔记本。
当我尝试运行以下代码时,我不断得到AttributeError: Can't get attribute 'load' on <module '__main__' (built-in)>
当我运行文件时,没有输出,它只是继续加载。
import pandas as pd
import datetime
import urllib
import requests
from pprint import pprint
import time
from io import StringIO
from multiprocessing import Process, Pool
symbols = ['AAP']
start = time.time()
dflist = []
def load(date):
if date is None:
return
url = "http://regsho.finra.org/FNYXshvol{}.txt".format(date)
try:
df = pd.read_csv(url,delimiter='|')
if any(df['Symbol'].isin(symbols)):
stocks = df[df['Symbol'].isin(symbols)]
print(stocks.to_string(index=False, header=False))
# Save stocks to mysql
else:
print(f'No stock found for {date}' )
except urllib.error.HTTPError:
pass
pool = []
numdays = 365
start_date = datetime.datetime(2019, 1, 15 ) #year - month - day
datelist = [
(start_date - datetime.timedelta(days=x)).strftime('%Y%m%d') for x in range(0, numdays)
]
pool = Pool(processes=16)
pool.map(load, datelist)
pool.close()
pool.join()
print(time.time() - start)
我该怎么办才能直接从笔记本上运行此代码而没有问题?
答案 0 :(得分:0)
一种方法:
1.获得load
函数并创建例如worker.py
2. import worker
和worker.load
3.
from multiprocessing import Pool
import worker
if __name__ == '__main__':
pool = []
numdays = 365
start_date = datetime.datetime(2019, 1, 15 ) #year - month - day
datelist = [
(start_date - datetime.timedelta(days=x)).strftime('%Y%m%d') for x in
range(0, numdays)
]
pool = Pool(processes=16)
pool.map(worker.load, datelist)
pool.close()
pool.join()