尽管尝试了不同的合并方式,但我还是无法如我所愿。
我想在 piat_retest_id_2 上合并df的 piat_comp 和 piat2 ,但是下面的代码(也尝试作为内部联接使用)不行达到预期的水平。
piat_comp2 = piat_comp.merge(piat2, on='piat_retest_id_2', how='outer')
例如,我期望piat_comp的索引8与piat 2的索引9成对,因为它们在'piat_retest_id_2'中共享相同的ID。相反,他们只是不排队。
在结果数据框中,这些行应合并为:
piat_retest_id_1 ----- PIAT.ability ----- piat_retest_id_2 ----- PIAT.ability_2
UK_543970282 ----- 0.270247832130706 ----- UK_358142873 ----- 0.697223344529081
请注意piat_retest_id_1和piat_retest_id_2不应相同。 piat_retest_id_2都在df中,我想对此进行合并,但最终只包含其中一列。
可复制:
piat_comp = {'piat_retest_id_1': {0: 'UK_982598362',
1: 'UK_554290758',
2: 'UK_416473256',
3: 'UK_717765782',
4: 'UK_340767839',
5: 'UK_393447950',
6: 'UK_16532112',
7: 'UK_887499021',
8: 'UK_543970282',
9: 'UK_86558749',
10: 'UK_763524616',
11: 'UK_59234772',
12: 'UK_891870396',
13: 'UK_416946337',
14: 'UK_208235437',
15: 'UK_697728998',
16: 'UK_283032428',
17: 'UK_927006735',
18: 'UK_838548458',
19: 'UK_935961427',
20: 'UK_534651143',
21: 'UK_469442638',
22: 'UK_357516555',
23: 'UK_869226039',
24: 'UK_675587892',
25: 'UK_331843371',
26: 'UK_570264371',
27: 'UK_818769311',
28: 'UK_708776594',
29: 'UK_811947376',
30: 'AUS_182800035',
31: 'AUS_436205218',
32: 'AUS_519722760',
33: 'AUS_948860279',
34: 'AUS_273917058',
35: 'AUS_174076947',
36: 'AUS_462744594',
37: 'AUS_718809552',
38: 'AUS_142275638',
39: 'AUS_646335936',
40: 'AUS_775355864',
41: 'AUS_523210619',
42: 'AUS_242767995',
43: 'AUS_485797627',
44: 'AUS_192289763',
45: 'AUS_971858664',
46: 'AUS_272182103',
47: 'AUS_6470694',
48: 'AUS_960651008',
49: 'AUS_36924588',
50: 'AUS_921547727',
51: 'AUS_469946434',
52: 'AUS_591613124',
53: 'AUS_575220499',
54: 'AUS_767535190',
55: 'AUS_6760645',
56: 'AUS_33323414',
57: 'AUS_453834043',
58: 'AUS_576415932',
59: 'AUS_359646415',
60: 'AUS_647631159',
61: 'AUS_535492855',
62: 'AUS_488064434',
63: 'AUS_230122761',
64: 'AUS_996001169',
65: 'AUS_830133002',
66: 'AUS_82508132',
67: 'AUS_922040010',
68: 'AUS_754682968',
69: 'AUS_79125001',
70: 'AUS_581895146',
71: 'AUS_100799448'},
'PIAT.ability': {0: 3.8309313391931497,
1: 1.99292247701631,
2: 3.94306748097956,
3: -0.19562132382300002,
4: 0.6505183735635122,
5: 0.731816086976127,
6: 0.8137871489410059,
7: 3.22777961014248,
8: 0.270247832130706,
9: 1.3424922846183798,
10: -0.301396636649614,
11: -1.9332907828737598,
12: 0.917831930881864,
13: 0.12488682346195801,
14: 0.357263190639869,
15: -0.771073750440309,
16: 0.947225971482024,
17: 1.09754260961856,
18: 3.89556727394303,
19: 0.000776309348843904,
20: 0.633059075095001,
21: -0.7613018941029259,
22: 0.35232544411647604,
23: 1.12508794021388,
24: -0.689808173864224,
25: 1.5182029956795,
26: 0.8041551225465369,
27: -0.49821628662950396,
28: 1.0916595064983101,
29: 3.6305272212891,
30: -0.941759632235263,
31: 0.8281845827398409,
32: 0.38229348622269504,
33: 1.53338336352128,
34: 0.41351872726046995,
35: 1.5705599264116397,
36: 1.97524137560666,
37: -0.00901326645847487,
38: -0.6601342995997729,
39: 0.764888906047256,
40: 1.5069746380603897,
41: 2.7867287535613703,
42: -0.0572566797274714,
43: 1.18340947496768,
44: 0.21109444697996899,
45: -0.11442018948849901,
46: 0.260924655953102,
47: 0.20230025184467001,
48: -0.3911319281544,
49: 1.66298720615184,
50: 2.0562478076601596,
51: -0.802324601478322,
52: 0.0949041456718715,
53: 0.39139573420752705,
54: 0.0536255839392736,
55: 1.32571209008263,
56: 0.532393162267327,
57: 0.269601175227049,
58: 0.7076081560697621,
59: 0.46112169587998597,
60: -0.403030461213409,
61: 0.43675734847674497,
62: -0.879126649374346,
63: -0.421994389129437,
64: 1.77097042768753,
65: -0.9110846702038922,
66: -1.07482469386456,
67: 3.7599324868259596,
68: 0.359258100506062,
69: 3.63222036081698,
70: 0.389727330252132,
71: 0.656178769811206},
'piat_retest_id_2': {0: 'UK_873131581',
1: 'UK_536050247',
2: 'UK_288912',
3: 'UK_601549101',
4: 'UK_654724631',
5: 'UK_927459150',
6: 'UK_161992453',
7: 'UK_898365573',
8: 'UK_358142873',
9: 'UK_749339291',
10: 'UK_137508979',
11: 'UK_802078996',
12: 'UK_418768387',
13: 'UK_538152168',
14: 'UK_825889086.',
15: 'UK_56800313',
16: 'UK_90101007',
17: 'UK_77933368',
18: 'UK_288469917',
19: 'UK_908770966',
20: 'UK_661264755',
21: 'UK_154114403',
22: 'UK_826457452',
23: 'UK_626934971',
24: 'UK_852937537',
25: 'UK_32221105',
26: 'UK_516899485',
27: nan,
28: 'UK_213817864',
29: 'UK_112922227',
30: 'AUS_1828000352',
31: 'AUS_4362052182',
32: 'AUS_5197227602',
33: 'AUS_9488602792',
34: 'AUS_2739170582',
35: 'AUS_1740769472',
36: 'AUS_4627445942',
37: 'AUS_7188095522',
38: 'AUS_1422756382',
39: 'AUS_6463359362',
40: 'AUS_7753558642',
41: nan,
42: 'AUS_4857976272',
43: 'AUS_1922897632',
44: 'AUS_9718586642',
45: 'AUS_2721821032',
46: 'AUS_64706942',
47: 'AUS_9606510082',
48: nan,
49: 'AUS_9215477272',
50: 'AUS_5916131242',
51: 'AUS_5752204992',
52: 'AUS_7675351902',
53: 'AUS_67606452',
54: 'AUS_333234142',
55: 'AUS_4538340432',
56: 'AUS_5764159322',
57: 'AUS_3596464152',
58: 'AUS_6476311592',
59: 'AUS_5354928552',
60: 'AUS_4880644342',
61: 'AUS_2301227612',
62: 'AUS_9960011692',
63: 'AUS_8301330022',
64: 'AUS_825081322',
65: 'AUS_9220400102',
66: 'AUS_7546829682',
67: 'AUS_791250012',
68: 'AUS_5818951462',
69: 'AUS_1007994482',
70: nan,
71: nan}}
piat_comp = pd.DataFrame().from_dict(piat_comp)
piat2 = {'piat_retest_id_2': {0: 'UK_873131581',
1: 'UK_536050247',
2: 'UK_288912',
3: 'UK_601549101',
4: 'UK_654724631',
5: 'UK_927459150',
6: 'UK_605723093',
7: 'UK_161992453',
8: 'UK_898365573',
9: 'UK_358142873',
10: 'UK_749339291',
11: 'UK_137508979',
12: 'UK_802078996',
13: 'UK_418768387',
14: 'UK_538152168',
15: 'UK_56800313',
16: 'UK_90101007',
17: 'UK_77933368',
18: 'UK_288469917',
19: 'UK_908770966',
20: 'UK_661264755',
21: 'UK_154114403',
22: 'UK_826457452',
23: 'UK_852937537',
24: 'UK_32221105',
25: 'UK_516899485',
26: 'UK_213817864',
27: 'UK_112922227',
28: 'AUS_1828000352',
29: 'AUS_4362052182',
30: 'AUS_5197227602',
31: 'AUS_5782596212',
32: 'AUS_9488602792',
33: 'AUS_2739170582',
34: 'AUS_1740769472',
35: 'AUS_4627445942',
36: 'AUS_7188095522',
37: 'AUS_1422756382',
38: 'AUS_6463359362',
39: 'AUS_7753558642',
40: 'AUS_4857976272',
41: 'AUS_1922897632',
42: 'AUS_9718586642',
43: 'AUS_2721821032',
44: 'AUS_64706942',
45: 'AUS_9606510082',
46: 'AUS_9215477272',
47: 'AUS_4699464342',
48: 'AUS_5916131242',
49: 'AUS_5752204992',
50: 'AUS_7675351902',
51: 'AUS_67606452'},
'PIAT.ability': {0: 4.0,
1: 3.03585323865227,
2: 3.0659628668283796,
3: -0.984877273151229,
4: 3.9214698118886804,
5: 2.51547803673487,
6: 1.1199284033743502,
7: 0.776919848266456,
8: 1.27559145269151,
9: 0.697223344529081,
10: 1.20628362697982,
11: 1.3367662330669798,
12: -0.862955270810047,
13: 3.8621560811803697,
14: 0.0635995324043882,
15: -0.5886718197915529,
16: -1.24297429168435,
17: 3.5438183255585898,
18: 4.0,
19: 1.11913257500304,
20: 0.7775141672201971,
21: 1.1006024338623002,
22: -0.24300164716209502,
23: -0.494374704856605,
24: 2.85613759713724,
25: 1.3029798990839299,
26: 0.0710404544671652,
27: 4.0,
28: 0.902265996923405,
29: 1.4454497071397798,
30: -1.2020915721021102,
31: -1.8592336815873403,
32: 1.61547349789574,
33: 0.26694017591396,
34: 2.44205760912957,
35: 0.6621194092522099,
36: -0.9020563539838921,
37: 2.15717946932124,
38: 1.16781892225373,
39: 1.20554720958442,
40: 1.7657674979533402,
41: 0.40870760302225895,
42: 0.0479209217874616,
43: 1.6004708092039999,
44: 0.19277544914143,
45: 2.06504675907639,
46: 2.95312483834473,
47: -0.870384004997555,
48: 0.7775511527014491,
49: 1.3847884057742,
50: 0.12852600156989802,
51: 1.15655034425564}}
piat2 = pd.DataFrame().from_dict(piat2)
答案 0 :(得分:1)
使用left_on和right_on进行合并,因为每个数据帧中都有不同的键。
piat_comp2 = piat_comp.merge(
piat2,
left_on='piat_retest_id_1',
right_on='piat_retest_id_2',
how='outer'
)