查找关键字+1并创建新列

时间:2019-05-27 18:02:58

标签: regex pandas text nlp keyword

目标:

1)在关键字旁边找到单词(例如brca

2)用这个词创建一个新列

背景

1)我有一个列表l,其中将其放入数据框df,并使用以下代码从中提取单词brca

l = ['carcinoma brca positive completion mastectomy',
     'clinical brca gene mutation',
     'carcinoma brca positive chemotherapy']
df = pd.DataFrame(l, columns=['Text'])
df['Gene'] = df['Text'].str.extract(r"(brca)")

输出:

                                                Text    Gene
0   breast invasive lobular carcinoma brca positiv...   brca
1   clinical history brca gene mutation . gross de...   brca
2   left breast invasive ductal carcinoma brca pos...   brca

问题:

但是,我现在正尝试为每一行在单词brca旁边查找单词,并创建一个新列。

所需的输出:

                                                Text    Gene  NextWord
0   breast invasive lobular carcinoma brca positiv...   brca  positive
1   clinical history brca gene mutation . gross de...   brca  gene
2   left breast invasive ductal carcinoma brca pos...   brca  positive

我看过python pandas dataframe words in context: get 3 words before and afterPANDAS Finding the exact word and before word in a column of string and append that new column in python (pandas) column,但它们对我而言并不起作用。

问题:

我如何实现目标?

3 个答案:

答案 0 :(得分:1)

我们可以使用称为partition的python内置方法

df['NextWord'] = df['Text'].apply(lambda x: x.partition('brca')[2]).str.split().str[0]

输出

                                            Text  Gene  NextWord
0  carcinoma brca positive completion mastectomy  brca  positive
1                    clinical brca gene mutation  brca      gene
2           carcinoma brca positive chemotherapy  brca  positive

说明

.partition返回三个值:

  • 关键字前面的字符串
  • 关键字本身
  • 关键字后的字符串
string = 'carcinoma brca positive completion mastectomy'

before, keyword, after = string.partition('brca')

print(before)
print(keyword)
print(after)

输出

carcinoma 
brca
 positive completion mastectomy

速度

我对答案之间的速度比较感到好奇,因为我使用了.apply,但是它是一种内置方法。没想到,我的回答是最快的:

dfbig = pd.concat([df]*10000, ignore_index=True)
dfbig.shape

(30000, 2)
%%timeit
dfbig['Text'].apply(lambda x: x.partition('brca')[2]).str.split().str[0]
31.5 ms ± 1.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
dfbig['NextWord'] = dfbig['Text'].str.split('brca').str[1].str.split('\s').str[1]
74.5 ms ± 2.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
dfbig['NextWord'] = dfbig['Text'].str.extract(r"(?<=brca)(.+?) ")
40.7 ms ± 2.4 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

答案 1 :(得分:0)

大量使用熊猫Series.str访问器:

df['NextWord'] = df['Text'].str.split('brca').str[1].str.split('\s').str[1]
df

                                            Text  Gene  NextWord
0  carcinoma brca positive completion mastectomy  brca  positive
1                    clinical brca gene mutation  brca      gene
2           carcinoma brca positive chemotherapy  brca  positive

答案 2 :(得分:0)

使用:

import pandas as pd

l = ['carcinoma brca positive completion mastectomy',
     'clinical brca gene mutation',
     'carcinoma brca positive chemotherapy']
df = pd.DataFrame(l, columns=['Text'])

df['NextWord'] = df['Text'].str.extract(r"(?<=brca)(.+?) ")
print(df)

输出:

                                            Text   NextWord
0  carcinoma brca positive completion mastectomy   positive
1                    clinical brca gene mutation       gene
2           carcinoma brca positive chemotherapy   positive