评估Nans切片大小

时间:2019-05-27 10:50:37

标签: python apache-spark pyspark apache-spark-sql user-defined-functions

我有一个Spark数据帧,其中的列中包含一些@Html.ActionLink( "Login", "AutoLogin", "Account", routeValues: new{}, htmlAttributes: new {id = "loginLink"}) 值。我需要计算非空值之前的连续null值。

我将使用null做这样的事情(该代码并未针对numpy进行优化,因为我正试图在问题中不使用它):

numpy

这样输出将如下所示:

import numpy as np

x = np.array([[0, None], [1, 3.], [2, 7.], [3, None], [4, 4.], [5, 3.], 
              [6, None], [7, None], [8, 5.], [9, 2.], [10, None]])

def nan_count(l, n):
    assert n <= len(l) + 1
    assert n >= 0

    if n < 1 or l[n-1] is not None:
        return 0
    return nan_count(l, n-1) + 1

y = map(lambda i: nan_count(x[:,1], i), x[:,0])
res = np.concatenate([x, np.asarray(y).reshape(-1,1)], axis = 1)
res

现在,如果我有一个Out[31]: [0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0] 这样的Spark DataFrame:

x
x = sc.parallelize([[0, None], [1, 3.], [2, 7.], [3, None], [4, 4.],
                    [5, 3.], [6, None], [7, None], [8, 5.], [9, 2.], [10, None]])\
      .toDF()
x.show()

我如何获得相同的输出?

我已经使用+---+----+ | _1| _2| +---+----+ | 0|null| | 1| 3.0| | 2| 7.0| | 3|null| | 4| 4.0| | 5| 3.0| | 6|null| | 7|null| | 8| 5.0| | 9| 2.0| | 10|null| +---+----+ 尝试了一些工作方法,但是在选择一个值之前我就遇到了问题(我尝试使用udfselect filter方法在udf中,但这是不允许的。

编辑:我不知道可能会找到多少个连续的pyspark.sql.dataframe.DataFrame

1 个答案:

答案 0 :(得分:1)

我在代码中添加了注释,以解释每个步骤,直到达到所需的输出为止。

当然,没有必要从下面的示例创建所有列,并且可能可以对这段代码进行很多改进,但是我认为这很重要,它一步一步地向您展示并初步开始解决您的问题。

x = sc.parallelize([
    [0, None],
    [1, 3.],
    [2, 7.],
    [3, None],
    [4, 4.],
    [5, 3.],
    [6, None],
    [7, None],
    [8, 5.],
    [9, 2.],
    [10, None]
])
# Assigned values ​​in columns A and B to facilitate manipulation
x = x.toDF(['A', 'B'])

# Prints initial DF
x.show()

输出:

+---+----+
|  A|   B|
+---+----+
|  0|null|
|  1| 3.0|
|  2| 7.0|
|  3|null|
|  4| 4.0|
|  5| 3.0|
|  6|null|
|  7|null|
|  8| 5.0|
|  9| 2.0|
| 10|null|
+---+----+
# Transform null values into "1"
x = x.withColumn('C', when(x.B.isNull(), 1))
x.show()

输出:

+---+----+----+
|  A|   B|   C|
+---+----+----+
|  0|null|   1|
|  1| 3.0|null|
|  2| 7.0|null|
|  3|null|   1|
|  4| 4.0|null|
|  5| 3.0|null|
|  6|null|   1|
|  7|null|   1|
|  8| 5.0|null|
|  9| 2.0|null|
| 10|null|   1|
+---+----+----+
# Creates a spec that order column A
order_spec = Window().orderBy('A')

# Doing a cumulative sum. See the explanation
# https://stackoverflow.com/questions/56384625/pyspark-cumulative-sum-with-reset-condition
x = x \
    .withColumn('tmp', sum((x.C.isNull()).cast('int')).over(order_spec)) \
    .withColumn('D', sum(x.C).over(order_spec.partitionBy("tmp"))) \
    .drop('tmp')
x.show()

输出:

+---+----+----+----+
|  A|   B|   C|   D|
+---+----+----+----+
|  0|null|   1|   1|
|  1| 3.0|null|null|
|  2| 7.0|null|null|
|  3|null|   1|   1|
|  4| 4.0|null|null|
|  5| 3.0|null|null|
|  6|null|   1|   1|
|  7|null|   1|   2|
|  8|null|   1|   3|
|  9| 5.0|null|null|
| 10| 2.0|null|null|
| 11|null|   1|   1|
+---+----+----+----+
# Put values from column D to one row above and select the desired output values
x = x.withColumn('E', lag(x.D, ).over(order_spec)) \
    .select(x.A, x.B, when(col('E').isNotNull(), col('E')).otherwise(0).alias('nan_count'))
x.show()

输出:

+---+----+---------+
|  A|   B|nan_count|
+---+----+---------+
|  0|null|        0|
|  1| 3.0|        1|
|  2| 7.0|        0|
|  3|null|        0|
|  4| 4.0|        1|
|  5| 3.0|        0|
|  6|null|        0|
|  7|null|        1|
|  8|null|        2|
|  9| 5.0|        3|
| 10| 2.0|        0|
| 11|null|        0|
+---+----+---------+

完整代码:

from pyspark.shell import sc
from pyspark.sql import Window
from pyspark.sql.functions import lag, when, sum, col

x = sc.parallelize([
    [0, None], [1, 3.], [2, 7.], [3, None], [4, 4.],
    [5, 3.], [6, None], [7, None], [8, None], [9, 5.], [10, 2.], [11, None]])
x = x.toDF(['A', 'B'])

# Transform null values into "1"
x = x.withColumn('C', when(x.B.isNull(), 1))

# Creates a spec that order column A
order_spec = Window().orderBy('A')

# Doing a cumulative sum with reset condition. See the explanation
# https://stackoverflow.com/questions/56384625/pyspark-cumulative-sum-with-reset-condition
x = x \
    .withColumn('tmp', sum((x.C.isNull()).cast('int')).over(order_spec)) \
    .withColumn('D', sum(x.C).over(order_spec.partitionBy("tmp"))) \
    .drop('tmp')

# Put values from column D to one row above and select the desired output values
x = x.withColumn('E', lag(x.D, ).over(order_spec)) \
    .select(x.A, x.B, when(col('E').isNotNull(), col('E')).otherwise(0).alias('nan_count'))
x.show()