我通过人工智能python程序开发了股票市场预测。 但是需要在internet.so中发布为网页,所以我使用CSS和JavaScript创建了html页面。但是我不知道如何将html页面与我的AI程序连接起来。
我的html代码:
body{
background-color: #E9F5F7;
font-family: arial, sans-serif;
margin: 0 auto;
}
.header{
width: 100%;
margin: 0 auto;
height: 80px;
background-color: #301E92;
position: fixed;
color: 000203;
padding-top: 20px;
font-size: 18px;
font-size: 18px;
font-weight: bold;
}
.header img {
float: left;
width: 100px;
height: 80px;
background: #555;
}
.header h1 {
position: sticky;
text-align: center;
top: 18px;
left: 10px;
}
h2{
color: #F8CD82;
}
.hero-image {
background-image: url("/trail/img/back.png");
background-color: 000203;
height: 300px;
background-position: center;
background-repeat: no-repeat;
background-size: cover;
position: relative;
}
h2{
font-family: Pacifico;
}
.autocomplete {
position: relative;
display: inline-block;
}
input {
border: 1px solid transparent;
background-color: #f1f1f1;
padding: 10px;
font-size: 16px;
}
input[type=text] {
background-color: #f1f1f1;
width: 100%;
}
input[type=submit] {
background-color: DodgerBlue;
color: #fff;
cursor: pointer;
width:100px;
}
.autocomplete-items {
position: absolute;
border: 1px solid #d4d4d4;
border-bottom: none;
border-top: none;
z-index: 99;
/*position the autocomplete items to be the same width as the container:*/
top: 100%;
left: 0;
right: 0;
}
.autocomplete-items div {
padding: 10px;
cursor: pointer;
background-color: #fff;
border-bottom: 1px solid #d4d4d4;
}
/*when hovering an item:*/
.autocomplete-items div:hover {
background-color: #e9e9e9;
}
/*when navigating through the items using the arrow keys:*/
.autocomplete-active {
background-color: DodgerBlue !important;
color: #ffffff;
}
<!DOCTYPE html>
<html>
<head>
<title>Stock Market predictor</title>
<link rel="stylesheet" href="style1.css">
</head>
<body>
<div class="header">
<img src="img/logo.png" alt="logo" />
<h1>Stock Market predictor<h1>
<h3>About as</h3>
<h4>Contact as</h4>
<div>
<div class="hero-image">
<div class="hero-text">
<h2>Welcome to Stock Market predictor</h2>
</div>
<form autocomplete="off" action="/action_page.php">
<div class="autocomplete" style="width:300px;">
<input id="myInput" type="text" name="symbols" placeholder="symbols">
</div>
<input type="submit">
</form>
</div>
</body>
</html>
但是我不知道如何连接AI代码:
import json as j
import pandas as pd
import numpy as np
import simplejson as json
import csv
import sys
import os
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfTransformer
# --- read and transform json file
json_data = None
with open('D:/materials/AI/science day/yelp_academic_dataset_review.json') as data_file:
lines = data_file.readlines()
joined_lines = "[" + ",".join(lines) + "]"
json_data = j.loads(joined_lines)
data = pd.DataFrame(json_data)
print(data.head())
LogisticRegression(solver='lbfgs')
# --- prepare the data
data = data[data.stars != 3]
data['sentiment'] = data['stars'] >= 4
# --- build the model
X_train, X_test, y_train, y_test = train_test_split(data, data.sentiment, test_size=0.2)
# -
count = CountVectorizer()
temp = count.fit_transform(X_train.text)
tdif = TfidfTransformer()
temp2 = tdif.fit_transform(temp)
text_regression = LogisticRegression()
model = text_regression.fit(temp2, y_train)
prediction_data = tdif.transform(count.transform(X_test.text))
predicted = model.predict(prediction_data)
# instead of doing all this steps above one could also use Pipeline
# this is a more compact way of writing the code above...
# it also has the benefit that there is no need to perform the transformations on the test data
#
#
from sklearn.pipeline import Pipeline
text_regression = Pipeline([('count', CountVectorizer()), ('tfidf', TfidfTransformer()),('reg', LogisticRegression())])
model = text_regression.fit(X_train.text, y_train)
predicted = model.predict(X_test.text)
# --- make predictions
print(np.mean(predicted == y_test))
# --- have some fun with the model
with open('news.csv', newline='') as myFile:
reader = csv.reader(myFile)
for row in reader:
n=row
value = model.predict(row)
print(value)
if(value[0]==True):
s="positive"
else:
s="negative"
os.system("python interface3.py "+str(s)+" "+str(n))
能否请您解释一下如何将此前端和后端连接?