我们在loganalytics中有2个自定义日志,我能够获取每个日志的平均值,我需要合并这2个日志,并将其合并为1表示vpn + url的平均值
workspace(name).vpn_CL
| extend healty=iff(Status_s == 'Connected' , 100 , 0)
| summarize vpn = avg(healty) by EnvName_s, ClientName_s
|
join
(
workspace(name).url_CL
| extend Availability=iff(StatusDescription_s == 'OK' , 100 , 0)
| summarize URL=avg(Availability) by EnvName_s, ClientName_s
) on ClientName_s
| project Client=ClientName_s, Environment=EnvName_s , vpn , URL
答案 0 :(得分:0)
根据我的理解,我认为vpn+url
的平均值是当vpn
的实体数为url
时,加上healty
值和Availability
值的结果等于workspace(name).vpn_CL
| extend healty=iff(Status_s == 'Connected' , 100 , 0)
| summarize m = count(), vpn = avg(healty) by EnvName_s, ClientName_s
|
join
(
workspace(name).url_CL
| extend Availability=iff(StatusDescription_s == 'OK' , 100 , 0)
| summarize n = count(), URL=avg(Availability) by EnvName_s, ClientName_s
) on ClientName_s
| project Client=ClientName_s, Environment=EnvName_s , vpn , URL, avgOfVpnUrl = vpn*m/(m+n)+url*n/(m+n)
个实体的数量。
否则,如果它们的实体数量不相等,则两个标签的平均值是基于其概率的期望值,
然后
#like this is for mean value
import pandas
print(len(df))
acc_x_mean=df.rolling(5).mean().dropna()[::5]
len(acc_x_mean)
what i am doing
import pandas
print(len(df))
acc_x_mad=df.rolling(5).apply(mad).dropna()[::5]
len(acc_x_mad)
but it not working
import pandas
print(len(df))
acc_x_max=df.rolling(5).apply(max).dropna()[::5]
len(acc_x_max)
import pandas
print(len(df))
acc_x_min=df.rolling(5).apply(min).dropna()[::5]
len(acc_x_min)
import pandas
print(len(df))
acc_x_mean=df.rolling(5).mean().dropna()[::5]
len(acc_x_mean)
name 'mad' is not defined
what attributes i called for mad
希望有帮助。