决策树分类器我不断收到NaN错误

时间:2019-05-27 01:16:52

标签: python numpy machine-learning scikit-learn decision-tree

我有一个小的决策树代码,我相信我会将所有内容都转换为int,并且已经使用isnan,max等检查了我的训练/测试数据。

我真的不知道为什么会出现这个错误。

因此,我尝试从决策树传递Mnist数据集,然后使用一个类进行攻击。

代码如下:

 from AttackUtils import Attack
    from AttackUtils import calc_output_weighted_weights, targeted_gradient, non_targeted_gradient, non_targeted_sign_gradient
    (X_train_woae, y_train_woae), (X_test_woae, y_test_woae) = mnist.load_data()
    X_train_woae = X_train_woae.reshape((len(X_train_woae), np.prod(X_train_woae.shape[1:])))
    X_test_woae = X_test_woae.reshape((len(X_test_woae), np.prod(X_test_woae.shape[1:])))

    from sklearn import tree
    #model_woae = LogisticRegression(multi_class='multinomial', solver='lbfgs', fit_intercept=False)
    model_woae = tree.DecisionTreeClassifier(class_weight='balanced')
    model_woae.fit(X_train_woae, y_train_woae)
    #model_woae.coef_ = model_woae.feature_importances_
    coef_int = np.round(model_woae.tree_.compute_feature_importances(normalize=False) * X_train_woae.size).astype(int)
    attack_woae = Attack(model_woae)
    attack_woae.prepare(X_train_woae, y_train_woae, X_test_woae, y_test_woae)
    weights_woae = attack_woae.weights
    num_classes_woae = len(np.unique(y_train_woae))
    attack_woae.create_one_hot_targets(y_test_woae)
    attack_woae.attack_to_max_epsilon(non_targeted_gradient, 50)
    non_targeted_scores_woae = attack_woae.scores

因此,攻击类别进行微扰和非目标梯度攻击。 这是攻击类别:

import numpy as np
from sklearn.metrics import accuracy_score


def calc_output_weighted_weights(output, w):
    for c in range(len(output)):
        if c == 0:
            weighted_weights = output[c] * w[c]
        else:
            weighted_weights += output[c] * w[c]
    return weighted_weights


def targeted_gradient(foolingtarget, output, w):
    ww = calc_output_weighted_weights(output, w)
    for k in range(len(output)):
        if k == 0:
            gradient = foolingtarget[k] * (w[k]-ww)
        else:
            gradient += foolingtarget[k] * (w[k]-ww)
    return gradient


def non_targeted_gradient(target, output, w):
    ww = calc_output_weighted_weights(output, w)
    for k in range(len(target)):
        if k == 0:
            gradient = (1-target[k]) * (w[k]-ww)
        else:
            gradient += (1-target[k]) * (w[k]-ww)
    return gradient


def non_targeted_sign_gradient(target, output, w):
    gradient = non_targeted_gradient(target, output, w)
    return np.sign(gradient)


class Attack:

    def __init__(self, model):
        self.fooling_targets = None
        self.model = model

    def prepare(self, X_train, y_train, X_test, y_test):
        self.images = X_test
        self.true_targets = y_test
        self.num_samples = X_test.shape[0]
        self.train(X_train, y_train)
        print("Model training finished.")
        self.test(X_test, y_test)
        print("Model testing finished. Initial accuracy score: " + str(self.initial_score))

    def set_fooling_targets(self, fooling_targets):
        self.fooling_targets = fooling_targets

    def train(self, X_train, y_train):
        self.model.fit(X_train, y_train)
        self.weights = self.model.coef_
        self.num_classes = self.weights.shape[0]

    def test(self, X_test, y_test):
        self.preds = self.model.predict(X_test)
        self.preds_proba = self.model.predict_proba(X_test)
        self.initial_score = accuracy_score(y_test, self.preds)

    def create_one_hot_targets(self, targets):
        self.one_hot_targets = np.zeros(self.preds_proba.shape)
        for n in range(targets.shape[0]):
            self.one_hot_targets[n, targets[n]] = 1

    def attack(self, attackmethod, epsilon):
        perturbed_images, highest_epsilon = self.perturb_images(epsilon, attackmethod)
        perturbed_preds = self.model.predict(perturbed_images)
        score = accuracy_score(self.true_targets, perturbed_preds)
        return perturbed_images, perturbed_preds, score, highest_epsilon

    def perturb_images(self, epsilon, gradient_method):
        perturbed = np.zeros(self.images.shape)
        max_perturbations = []
        for n in range(self.images.shape[0]):
            perturbation = self.get_perturbation(epsilon, gradient_method, self.one_hot_targets[n], self.preds_proba[n])
            perturbed[n] = self.images[n] + perturbation
            max_perturbations.append(np.max(perturbation))
        highest_epsilon = np.max(np.array(max_perturbations))
        return perturbed, highest_epsilon

    def get_perturbation(self, epsilon, gradient_method, target, pred_proba):
        gradient = gradient_method(target, pred_proba, self.weights)
        inf_norm = np.max(gradient)
        perturbation = epsilon / inf_norm * gradient
        return perturbation

    def attack_to_max_epsilon(self, attackmethod, max_epsilon):
        self.max_epsilon = max_epsilon
        self.scores = []
        self.epsilons = []
        self.perturbed_images_per_epsilon = []
        self.perturbed_outputs_per_epsilon = []
        for epsilon in range(0, self.max_epsilon):
            perturbed_images, perturbed_preds, score, highest_epsilon = self.attack(attackmethod, epsilon)
            self.epsilons.append(highest_epsilon)
            self.scores.append(score)
            self.perturbed_images_per_epsilon.append(perturbed_images)
            self.perturbed_outputs_per_epsilon.append(perturbed_preds)

这是它提供的回溯:

ValueError

  

内向追踪(最近通话最近一次)            4 num_classes_woae = len(np.unique(y_train_woae))         5 Attack_woae.create_one_hot_targets(y_test_woae)   ----> 6 Attack_woae.attack_to_max_epsilon(non_targeted_gradient,50)         7 non_targeted_scores_woae = Attack_woae.scores

     

〜\ MULTIATTACK \ AttackUtils.py在   Attack_to_max_epsilon(自我,攻击方法,max_epsilon)       106 self.perturbed_outputs_per_epsilon = []       范围(0,self.max_epsilon)中的epsilon为107:   -> 108个perturbed_images,perturbed_preds,得分,highest_epsilon = self.attack(attackmethod,epsilon)       109个self.epsilons.append(highest_epsilon)       110 self.scores.append(score)

     

〜\ MULTIATTACK \ AttackUtils.py受到攻击(自我,   攻击方法,epsilon)        79 def攻击(自身,攻击方法,epsilon):        80个perturbed_images,highest_epsilon = self.perturb_images(epsilon,攻击方法)   ---> 81个perturbed_preds = self.model.predict(perturbed_images)        82分= precision_score(self.true_targets,perturbed_preds)        83个返回perturbed_images,perturbed_preds,得分,highest_epsilon

     

... \ appdata \ local \ programs \ python \ python35 \ lib \ site-packages \ sklearn \ tree \ tree.py   在预测中(self,X,check_input)       413“”“       414 check_is_fitted(self,'tree_')   -> 415 X = self._validate_X_predict(X,check_input)       第416章       417 n_samples = X.shape [0]

     

... \ appdata \ local \ programs \ python \ python35 \ lib \ site-packages \ sklearn \ tree \ tree.py   在_validate_X_predict(self,X,check_input)中       374“”“每当尝试预测,应用,predict_proba时都要验证X”“”       第375章   -> 376 X = check_array(X,dtype = DTYPE,accept_sparse =“ csr”)       377如果issparse(X)和(X.indices.dtype!= np.intc或       378 X.indptr.dtype!= np.intc):

     

... \ appdata \ local \ programs \ python \ python35 \ lib \ site-packages \ sklearn \ utils \ validation.py   在check_array(array,accept_sparse,accept_large_sparse,dtype,   订单,复制,force_all_finite,ensure_2d,allow_nd,   sure_min_samples,ensure_min_features,warn_on_dtype,estimator)       第566章       第567章   -> 568 allow_nan = force_all_finite =='allow-nan')       569       570 shape_repr = _shape_repr(array.shape)

     

... \ appdata \ local \ programs \ python \ python35 \ lib \ site-packages \ sklearn \ utils \ validation.py   在_assert_all_finite(X,allow_nan)中        54 not allow_nan和np.isfinite(X).all()):        55 type_err ='infinity'如果allow_nan否则为'NaN,infinity'   ---> 56引发ValueError(msg_err.format(type_err,X.dtype))        57        58

     

ValueError:输入包含NaN,无穷大或值对于   dtype('float32')。

编辑:

我将系数编号添加为0,现在它在行attack.attack_to_max_epsilon(non_targeted_gradient, epsilon_number)下给出了相同的错误

1 个答案:

答案 0 :(得分:0)

在训练之前,尝试对标签施加一口热。。

from sklearn.preprocessing import LabelEncoder

mylabels= ["label1", "label2", "label2"..."n.label"]
le = LabelEncoder()
labels = le.fit_transform(mylabels)

,然后尝试拆分数据:

from sklearn.model_selection import train_test_split
(x_train, x_test, y_train, y_test) = train_test_split(data,
                                                     labels,
                                                     test_size=0.25)

现在您的标签可能会用数字编码,这对于训练机器学习算法非常有用。