经过数小时的尝试学习如何做到这一点,我正在与社区联系。
我从以下内容开始:
perf
date
2018-06-01 0.012923
2018-06-02 0.039364
2018-06-03 0.042805
2018-06-04 -0.033214
2018-06-05 -0.021745
需要计算新列的累积百分比变化,但需要确保计算使用100作为起始值。所以我在单行前面加上了100:
perf pct_change
date
2018-05-31 NaN 100.0
2018-06-01 0.012923 NaN
2018-06-02 0.039364 NaN
2018-06-03 0.042805 NaN
2018-06-04 -0.033214 NaN
我需要得到的是这个
perf pct_change
date
2018-05-31 NaN 100.0
2018-06-01 0.012923 101.2923
2018-06-02 0.039364 105.2795701
2018-06-03 0.042805 109.7860621
2018-06-04 -0.033214 106.1396278
公式类似于pct_change = previous_days_pct_change * ( 1 + perf )
我尝试了几种不同的方法,包括没有成功的for ... in
循环。
# INCOMPLETE/DOES NOT WORK (adding for illustration purposes only)
for index, row in performance.iterrows():
curr = performance.loc[index, 'perf']
pidx = index + pd.DateOffset(-1)
prev = performance.iloc[[pidx], 'pct_change']
performance.loc[index, 'pct_change'] = prev * ( 1 + curr )
我也尝试过:
performance['pct_change'] = performance['pct_change'].shift() * ( 1 + performance['perf'] )
哪种产量:
perf pct_change
date
2018-05-31 NaN NaN
2018-06-01 0.012923 101.292251
2018-06-02 0.039364 NaN
2018-06-03 0.042805 NaN
2018-06-04 -0.033214 NaN
但这只给了我一个价值。
我怀疑已经有一种更简单的方法来执行我想做的事情,但我只是没有找到它。任何帮助,将不胜感激。在电子表格中非常容易做到,但是我想学习如何在Pandas中做到这一点。
谢谢
答案 0 :(得分:2)
使用cumprod
:
df['pct_change'] = (df['perf']+1).cumprod() * 100
达到您的实际需求:
pct_change_0 = (perf_0 + 1) * 100
pct_change_1 = pct_change_0 * (perf_1 + 1) = (perf_0 + 1) * (perf_1 + 1) * 100
pct_change_2 = pct_change_1 * (perf_2 + 1) = (perf_0 + 1) * (perf_1 + 1) * (perf_2 + 1) * 100
...
因此,您实际上是在计算perf
值(或更准确地说perf + 1
值)的累积乘积。
答案 1 :(得分:0)
像这样:
dates = ['2018-06-01', '2018-06-02', '2018-06-03', '2018-06-04', '2018-06-05']
import datetime as dt
dates = [pd.datetime.date(dt.datetime.strptime(x, "%Y-%m-%d")) for x in dates]
perfs = [0.012923, 0.039364, 0.042805, -0.033214, -0.021745]
df = pd.DataFrame({'perf': perfs}, index=dates)
# The important bit:
df['pct_change'] = ((df['perf'] + 1).cumprod() * 100)
df
# perf pct_change
# 2018-06-01 0.012923 101.292300
# 2018-06-02 0.039364 105.279570
# 2018-06-03 0.042805 109.786062
# 2018-06-04 -0.033214 106.139628
# 2018-06-05 -0.021745 103.831622