熊猫-Groupby和聚合在多个列上

时间:2019-05-26 04:32:10

标签: python r pandas pandas-groupby

我正在尝试在多个列中汇总groupby中的值。我来自R / dplyr世界,通常可以使用group_by / summarize在同一行中实现我想要的功能。我正在尝试找到一种等效的优雅方法来使用熊猫。

请考虑以下输入数据集。我想按状态汇总并按状态计算列v1为 v1 = sum(n1)/ sum(d1)

使用dplyr的 r代码如下:

input %>% group_by(state) %>% 
  summarise(v1=sum(n1)/sum(d1),
            v2=sum(n2)/sum(d2))

在Python中是否有一种优雅的方法?我发现了一种在堆栈溢出答案here中获得所需内容的冗长方法。 从链接中复制修改过的 python代码

In [14]: s = mn.groupby('state', as_index=False).sum()

In [15]: s['v1'] = s['n1'] / s['d1']

In [16]: s['v2'] = s['n2'] / s['d2']
In [17]: s[['state', 'v1', 'v2']]

输入数据集

state n1    n2     d1  d2
CA   100   1000    1   2
FL   200   2000    2   4
CA   300   3000    3   6
AL   400   4000    4   8
FL   500   5000    5   2
NY   600   6000    6   4
CA   700   7000    7   6

输出

state   v1           v2
AL      100   500.000000
CA      100   500.000000
NY      100  1500.000000
CA      100  1166.666667
FL      100  1166.666667

3 个答案:

答案 0 :(得分:1)

使用DataFrame.assignDataFrame.reindex的一种可能的解决方案:

df = (mn.groupby('state', as_index=False)
        .sum()
        .assign(v1 = lambda x: x['n1'] / x['d1'], v2 = lambda x: x['n2'] / x['d2'])
        .reindex(['state', 'v1', 'v2'], axis=1))

print (df)
  state     v1           v2
0    AL  100.0   500.000000
1    CA  100.0   785.714286
2    FL  100.0  1166.666667
3    NY  100.0  1500.000000

还有一个带有GroupBy.apply和自定义lambda函数的

df = (mn.groupby('state')
        .apply(lambda x: x[['n1','n2']].sum() / x[['d1','d2']].sum().values)
        .reset_index()  
        .rename(columns={'n1':'v1', 'n2':'v2'})
      )
print (df)
  state     v1           v2
0    AL  100.0   500.000000
1    CA  100.0   785.714286
2    FL  100.0  1166.666667
3    NY  100.0  1500.000000

答案 1 :(得分:1)

另一种解决方案:

def func(x):
    u = x.sum()
    return pd.Series({'v1':u['n1']/u['d1'],
                      'v2':u['n2']/u['d2']})

df.groupby('state').apply(func)

输出:

         v1     v2
state       
AL      100.0   500.000000
CA      100.0   785.714286
FL      100.0   1166.666667
NY      100.0   1500.000000

答案 2 :(得分:0)

这里是你在 R 中所做的等效方式:

>>> from datar.all import f, tribble, group_by, summarise, sum
>>> 
>>> input = tribble(
...     f.state, f.n1,    f.n2,     f.d1,  f.d2,
...     "CA",    100,     1000,     1,     2,
...     "FL",    200,     2000,     2,     4,
...     "CA",    300,     3000,     3,     6,
...     "AL",    400,     4000,     4,     8,
...     "FL",    500,     5000,     5,     2,
...     "NY",    600,     6000,     6,     4,
...     "CA",    700,     7000,     7,     6,
... )
>>> 
>>> input >> group_by(f.state) >> \
...   summarise(v1=sum(f.n1)/sum(f.d1),
...             v2=sum(f.n2)/sum(f.d2))
     state        v1           v2
  <object> <float64>    <float64>
0       AL     100.0   500.000000
1       CA     100.0   785.714286
2       FL     100.0  1166.666667
3       NY     100.0  1500.000000

我是 datar 软件包的作者。