在使用盆地跳水时出现此错误:
basinhopping_bounds() got an unexpected keyword argument 'f_new'
我正在尝试在Python中实施对X,F models的分析以解决DTLZ7 problem。
因此,我从一个4线性FO的问题开始,这个结果我知道。当尝试使用盆地跳跃进行全局最小化来解决问题时,出现了上面的错误(scipy-1.2.1。)。有人知道出了什么问题吗?
下面是部分代码:
f1 = f_linear([0.06, 0.53, 0.18, 0.18, 0.06], "max")
f2 = f_linear([25, 70, 60, 95, 45], "max")
f3 = f_linear([0, 32.5, 300, 120, 0], "min")
f4 = f_linear([0.1, 0.1, 0.11, 0.35, 0.33], "min")
A_eq = np.array([[1, 1, 1, 1, 1]])
b_eq = np.array([3000])
x0_bounds = (0, 850)
x1_bounds = (0, 220)
x2_bounds = (0, 1300)
x3_bounds = (0, 1615)
x4_bounds = (0, 700)
F = [f1, f2, f3, f4]
def mu_D(x, F):
x = np.array(x)
return max([f_.mu(x) for f_ in F])
def basinhopping_bounds(x):
resp = True
if np.dot(x, A_eq[0]) != b_eq[0]:
resp = False
if x[0] < x0_bounds[0] or x[0] > x0_bounds[1]:
resp = False
if x[1] < x1_bounds[0] or x[1] > x1_bounds[1]:
resp = False
if x[2] < x2_bounds[0] or x[2] > x2_bounds[1]:
resp = False
if x[3] < x3_bounds[0] or x[3] > x3_bounds[1]:
resp = False
if x[4] < x4_bounds[0] or x[4] > x4_bounds[1]:
resp = False
return resp
cobyla_constraints = [
{"type": "ineq", "fun": lambda x: x[0]},
{"type": "ineq", "fun": lambda x: x0_bounds[1] - x[0]},
{"type": "ineq", "fun": lambda x: x[1]},
{"type": "ineq", "fun": lambda x: x1_bounds[1] - x[1]},
{"type": "ineq", "fun": lambda x: x[2]},
{"type": "ineq", "fun": lambda x: x2_bounds[1] - x[2]},
{"type": "ineq", "fun": lambda x: x[3]},
{"type": "ineq", "fun": lambda x: x3_bounds[1] - x[3]},
{"type": "ineq", "fun": lambda x: x[4]},
{"type": "ineq", "fun": lambda x: x4_bounds[1] - x[4]},
{"type": "eq", "fun": lambda x: np.dot(x, A_eq[0]) - b_eq[0]},
]
minimizer_kwargs = {"args": F, "method": "SLSQP", "constraints": cobyla_constraints}
opt.basinhopping(
mu_D,
f1.x_max,
minimizer_kwargs=minimizer_kwargs,
accept_test=basinhopping_bounds,
disp=True,
)
basinhopping step 0: f 1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-11-ba4f3efaec5d> in <module>
5 minimizer_kwargs=minimizer_kwargs,
6 accept_test=basinhopping_bounds,
----> 7 disp=True,
8 )
~/anaconda3/lib/python3.6/site-packages/scipy/optimize/_basinhopping.py in basinhopping(func, x0, niter, T, stepsize, minimizer_kwargs, take_step, accept_test, callback, interval, disp, niter_success, seed)
674 " successfully"]
675 for i in range(niter):
--> 676 new_global_min = bh.one_cycle()
677
678 if callable(callback):
~/anaconda3/lib/python3.6/site-packages/scipy/optimize/_basinhopping.py in one_cycle(self)
152 new_global_min = False
153
--> 154 accept, minres = self._monte_carlo_step()
155
156 if accept:
~/anaconda3/lib/python3.6/site-packages/scipy/optimize/_basinhopping.py in _monte_carlo_step(self)
127 for test in self.accept_tests:
128 testres = test(f_new=energy_after_quench, x_new=x_after_quench,
--> 129 f_old=self.energy, x_old=self.x)
130 if testres == 'force accept':
131 accept = True
TypeError: basinhopping_bounds() got an unexpected keyword argument 'f_new'
答案 0 :(得分:0)
https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.optimize.basinhopping.html
此文档描述了accept_test
参数。它必须是可调用的,它可以识别一组关键字参数(或至少在给它们关键字时不会阻塞):
accept_test : callable, accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old), optional
Define a test which will be used to judge whether or not to accept the step.
This will be used in addition to the Metropolis test based on “temperature” T.
The acceptable return values are True, False, or "force accept". If any of the
tests return False then the step is rejected. If the latter, then this will
override any other tests in order to accept the step. This can be used, for
example, to forcefully escape from a local minimum that basinhopping is
trapped in.
您的函数仅采用位置参数:
def basinhopping_bounds(x):
您还可以在错误回溯中查看minimize
如何调用您的函数:
testres = test(f_new=energy_after_quench, x_new=x_after_quench,
--> 129 f_old=self.energy, x_old=self.x)
答案 1 :(得分:0)
您的边界定义不正确。在basinhopping
中,您的界限应定义为类实例。您应该使用以下命令:
import numpy as np
import scipy.optimize as opt
class MyBounds(object):
'''
bounds class to make sure your variable is with in the inspected bounds
'''
def __init__(self, xmin, xmax):
self.xmax = np.array(xmax)
self.xmin = np.array(xmin)
def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
# init bounds
lower_bounds = [ 0, 0, 0, 0, 0]
upper_bounds = [850, 220, 1300, 1615, 700]
my_bounds = MyBounds(lower_bounds, upper_bounds)
...
# optimize
result = opt.basinhopping(mu_D,
f1.x_max,
minimizer_kwargs = minimizer_kwargs,
accept_test = my_bounds,
disp = True)
还考虑合并您的约束。如果使用数组而不是元素约束,则只有三个约束。但是,查看您的约束(最后一个约束除外),您只是在重新定义边界。