遇到一个jupyter笔记本项目问题,我试图在运行Python 3的Windows 10计算机上工作,我从此函数中得到上述错误:
buy_per_min = (buy
.groupby([pd.Grouper(key='timestamp', freq='Min'), 'price'])
.shares
.sum()
.apply(np.log)
.to_frame('shares')
.reset_index('price')
.between_time(market_open, market_close)
.groupby(level='timestamp', as_index=False, group_keys=False)
.apply(lambda x: x.nlargest(columns='price', n=depth))
.reset_index())
buy_per_min.timestamp = buy_per_min.timestamp.add(utc_offset).astype(int)
buy_per_min.info()
问题出在
buy_per_min.timestamp = buy_per_min.timestamp.add(utc_offset).astype(int)
行,但我不完全理解为什么要这么做。这是完整的回溯:
TypeError Traceback (most recent call last)
<ipython-input-28-396768b710c8> in <module>()
10 .apply(lambda x: x.nlargest(columns='price', n=depth))
11 .reset_index())
---> 12 buy_per_min.timestamp = buy_per_min.timestamp.add(utc_offset).astype(int)
13 buy_per_min.info()
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\generic.py in astype(self, dtype, copy, errors, **kwargs)
5689 # else, only a single dtype is given
5690 new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
-> 5691 **kwargs)
5692 return self._constructor(new_data).__finalize__(self)
5693
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\internals\managers.py in astype(self, dtype, **kwargs)
529
530 def astype(self, dtype, **kwargs):
--> 531 return self.apply('astype', dtype=dtype, **kwargs)
532
533 def convert(self, **kwargs):
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\internals\managers.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs)
393 copy=align_copy)
394
--> 395 applied = getattr(b, f)(**kwargs)
396 result_blocks = _extend_blocks(applied, result_blocks)
397
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\internals\blocks.py in astype(self, dtype, copy, errors, values, **kwargs)
532 def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs):
533 return self._astype(dtype, copy=copy, errors=errors, values=values,
--> 534 **kwargs)
535
536 def _astype(self, dtype, copy=False, errors='raise', values=None,
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\internals\blocks.py in _astype(self, dtype, **kwargs)
2137
2138 # delegate
-> 2139 return super(DatetimeBlock, self)._astype(dtype=dtype, **kwargs)
2140
2141 def _can_hold_element(self, element):
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\internals\blocks.py in _astype(self, dtype, copy, errors, values, **kwargs)
631
632 # _astype_nansafe works fine with 1-d only
--> 633 values = astype_nansafe(values.ravel(), dtype, copy=True)
634
635 # TODO(extension)
~\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\dtypes\cast.py in astype_nansafe(arr, dtype, copy, skipna)
644 raise TypeError("cannot astype a datetimelike from [{from_dtype}] "
645 "to [{to_dtype}]".format(from_dtype=arr.dtype,
--> 646 to_dtype=dtype))
647
648 elif is_timedelta64_dtype(arr):
TypeError: cannot astype a datetimelike from [datetime64[ns]] to [int32]
我需要对时间戳信息进行某种转换吗?它看起来像什么?谢谢!
更新
以前有一个类似的问题,我已经读过,但是看不到如何将其应用于我的问题,如果有人知道,我希望给出一个解释。可以在这里找到:
答案 0 :(得分:1)
熊猫无法将日期时间转换为int32
,因此引发错误。如果将其转换为np.int64
有效,还可以将numpy数组转换为具有错误值的int
或转换为int64
-然后以nanoseconds
的原始格式获取日期时间:>
rng = pd.date_range('2017-04-03 12:00:45', periods=3)
buy_per_min = pd.DataFrame({'timestamp': rng})
from datetime import timedelta
utc_offset = timedelta(hours=4)
print (buy_per_min.timestamp.add(utc_offset))
0 2017-04-03 16:00:45
1 2017-04-04 16:00:45
2 2017-04-05 16:00:45
Name: timestamp, dtype: datetime64[ns]
print (buy_per_min.timestamp.add(utc_offset).values)
['2017-04-03T16:00:45.000000000' '2017-04-04T16:00:45.000000000'
'2017-04-05T16:00:45.000000000']
print (buy_per_min.timestamp.add(utc_offset).values.astype(np.int64))
[1491235245000000000 1491321645000000000 1491408045000000000]
print (buy_per_min.timestamp.add(utc_offset).astype(np.int64))
0 1491235245000000000
1 1491321645000000000
2 1491408045000000000
Name: timestamp, dtype: int64
#https://stackoverflow.com/a/12716674
print (buy_per_min.timestamp.add(utc_offset).values.astype(int))
[ -289111552 -2146205184 291668480]
答案 1 :(得分:0)
我刚刚遇到了一个非常相似的问题:
TypeError:无法将类似datetime的类型从[datetime64 [ns]]分配为[bool]
在我的情况下,通过添加括号解决了问题。比较一下:
df2 = df[
(df['column1'] != df['column2']) &
df['column3'] >= '03.02.2020'
].copy()
对此:
df2 = df[
(df['column1'] != df['column2']) &
(df['column3'] >= '03.02.2020')
].copy()
在我看来,错误消息仅是由于&
运算符被应用于基于日期时间的列column3
而触发的。