运行代码时遇到以下错误
n = int(input('Enter the number of elements: '))
print('Enter the elements: ')
arr = list(set(int(input()) for _ in range(n)))
arr.sort()
print(arr)
Enter the number of elements: 6
Enter the elements:
4
2
2
3
1
3
[1, 2, 3, 4]
我想取Level None not found
和pt = df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = True)
pt = pt.sort_values('Score', ascending = False)
的平均值,还要计算用户名。然后按Threat Score
从高到低排序。
答案 0 :(得分:1)
它是熊猫中的虫子,这同样是github link。此错误是每个列和margins=True
都有多个聚合的结果,如果选择标志margins = False
则不会出现此错误。您可以稍后添加它们。那肯定会起作用:
pt = df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = False)
pt = pt.sort_values('Score', ascending = False)
让我知道这是否适合您
答案 1 :(得分:0)
pt = df.pivot_table(index = 'User Agent', values = ['Threat Score', 'Score','Source IP'] ,
aggfunc = {"Source IP" : 'count',
'Threat Score':np.mean,
'Score': np.mean})
pt = pt.sort_values('Threat Score', ascending = False)
new_cols = ['Avg_Score', 'Count', 'Avg_ThreatScore']
pt.columns = new_cols
pt.to_csv(Path3 + '\\AllUserAgent.csv')