我有一些代码在逻辑上最好设置为高度嵌套的数组。 整体结构具有高维度和稀疏性,因此我不得不根据稀疏实现的要求将其转换为2d矩阵,这样它才能适合内存。
我现在发现自己在两种格式之间切换,这既复杂又令人困惑。我写了一个小函数,它从嵌套输入中将计算2d单元格,但是如果我要进行范围查询,它将变得更加复杂。
import numpy as np
dim1 = 1
dim2 = 2
dim3 = 3
dim4 = 4
dim5 = 5
dim6 = 6
sixD = np.arange(720).reshape(dim1, dim2, dim3, dim4, dim5, dim6)
twoD = sixD.transpose(0,1,2,3,4,5).reshape(dim1,-1)
def sixDto2DCell(a, b, c, d, e, f):
return [a, (b*dim3*dim4*dim5*dim6) +
(c*dim4*dim5*dim6) +
(d*dim5*dim6) +
(e*dim6) +
f]
x, y = sixDto2DCell(0, 1, 2, 3, 4, 5)
assert(sixD[0, 1, 2, 3, 4, 5] == twoD[x, y])
所以我正在尝试对类似的查询做些什么
sixD[0, 1, 0:, 3, 4, 5]
在二维矩阵中返回相同的值
我需要编写一个新函数,还是想念实现相同功能的内置numpy方法?
任何帮助将不胜感激:-)
答案 0 :(得分:1)
方法1
这是一种从2D稀疏矩阵或任何2D数组中提取数据的方法,该方法具有相应的n-dim数组及其沿每个轴的起始索引和结束索引-
def sparse_ndim_map_indices(ndim_shape, start_index, end_index):
"""
Get flattened indices for indexing into a sparse array mapped to
a corresponding n-dim array.
"""
# Get shape and cumulative shape info for use to get flattened indices later
shp = ndim_shape
cshp = np.r_[np.cumprod(shp[::-1])[::-1][1:],1]
# Create open-ranges
o_r = np.ix_(*[s*np.arange(i,j) for (s,i,j) in zip(cshp,start_index,end_index)])
id_ar = np.zeros(np.array(end_index) - np.array(start_index), dtype=int)
for r in o_r:
id_ar += r
return id_ar
使用提供的样本来研究样本案例运行-
In [637]: start_index = (0,1,1,1,4,3)
...: end_index = (1,2,3,4,5,6)
...:
...: out1 = sixD[0:1, 1:2, 1:3, 1:4, 4:5, 3:6]
In [638]: out1
Out[638]:
array([[[[[[537, 538, 539]],
[[567, 568, 569]],
[[597, 598, 599]]],
[[[657, 658, 659]],
[[687, 688, 689]],
[[717, 718, 719]]]]]])
In [641]: idx = sparse_ndim_map_indices(sixD.shape, start_index, end_index)
In [642]: twoD[:,idx.ravel()]
Out[642]:
array([[537, 538, 539, 567, 568, 569, 597, 598, 599, 657, 658, 659, 687,
688, 689, 717, 718, 719]])
方法2
这里是沿每个轴创建索引的所有组合,然后使用np.ravel_multi_index
获得展平的索引的另一种方法-
import itertools
def sparse_ndim_map_indices_v2(ndim_shape, start_index, end_index):
# Create ranges and hence get the flattened indices
r = [np.arange(i,j) for (i,j) in zip(start_index,end_index)]
return np.ravel_multi_index(np.array(list(itertools.product(*r))).T, ndim_shape)