我有一个熊猫数据框,看起来像下面的issue
数据框:
import pandas as pd
import datetime
Y = 2017
M = 9
dats = (datetime.datetime(Y, M, M, 15, 30), datetime.datetime(Y, M, M, 16),
datetime.datetime(Y, M, M, 16, 30), datetime.datetime(Y, M, M, 17),
datetime.datetime(Y, M, M, 17, 4), datetime.datetime(Y, M, M, 17, 30),
datetime.datetime(Y, M, M, 18), datetime.datetime(Y, M, M, 18, 30))
issue = {'datetime': dats,
'5.0':(2.05, 2.04, 2.04 ,1, float('NaN'), 2.05, 2.04, 5),
'6.0':(5.8, 5.9, 5.2, float('NaN'), 6, 6.01, 5, 5.02)}
issue = pd.DataFrame.from_dict(issue)
我想总结一下此数据框中的数据,以仅包含半小时点,并取该半小时内发生的所有值的平均值(nan
值除外)。因此,最终目标是要拥有一个类似于下面创建的resolution
数据框的数据框:
import pandas as pd
import datetime
Y = 2017
M = 9
dats2 = (datetime.datetime(Y, M, M, 15, 30), datetime.datetime(Y, M, M, 16),
datetime.datetime(Y, M, M, 16, 30), datetime.datetime(Y, M, M, 17),
datetime.datetime(Y, M, M, 17, 30), datetime.datetime(Y, M, M, 18),
datetime.datetime(Y, M, M, 18, 30))
resolution = {'datetime': dats2,
'5.0':(2.05, 2.04, 2.04 ,1, 2.05, 2.04, 5),
'6.0':(5.8, 5.9, 5.2, 6, 6.01, 5, 5.02)}
resolution = pd.DataFrame.from_dict(resolution)
我可以很容易地使用dplyr
在R中做到这一点,但是对于Python我还是有些菜鸟。预先感谢您对此事的任何帮助!
答案 0 :(得分:3)
比R短
issue.set_index('datetime').resample('30 min').mean()
Out[685]:
5.0 6.0
datetime
2017-09-09 15:30:00 2.05 5.80
2017-09-09 16:00:00 2.04 5.90
2017-09-09 16:30:00 2.04 5.20
2017-09-09 17:00:00 1.00 6.00
2017-09-09 17:30:00 2.05 6.01
2017-09-09 18:00:00 2.04 5.00
2017-09-09 18:30:00 5.00 5.02