使用Series.value_counts时如何在不指定列名的情况下实现Dataframe.value_counts()

时间:2019-05-22 13:41:41

标签: python pandas

例如,我得到如下数据框:

    PassengerId   Survived    Pclass    
0   1             0           3 
1   2             1           1 
2   3             1           3 

在调用df.value_counts()之后,我可以得到所有列的value_counts(),而不必每次都指定一列,这可能是这样的:

1      1
2      1
3      1
Name: PassengerId, dtype: int64

0      1
1      2
Name: Survived, dtype: int64

3      2
1      1
Name: Survived, dtype: int64

我想知道如何实现。
有人可以帮我吗?
预先感谢。

3 个答案:

答案 0 :(得分:3)

对于每列应用功能,有DataFrame.apply的2种解决方案,但是索引按它们的交点对齐,因此添加了NaN s:

df1 = df.apply(pd.value_counts)
print (df1)
   PassengerId  Survived  Pclass
0          NaN       1.0     NaN
1          1.0       2.0     1.0
2          1.0       NaN     NaN
3          1.0       NaN     2.0

df1 = df.apply(pd.Series.value_counts)
print (df1)
   PassengerId  Survived  Pclass
0          NaN       1.0     NaN
1          1.0       2.0     1.0
2          1.0       NaN     NaN
3          1.0       NaN     2.0

为避免这种情况,可以使用SeriesGroupBy.value_counts

df1 = df.stack().groupby(level=1).value_counts().rename_axis(('a','b')).reset_index(name='c')
print (df1)
             a  b  c
0  PassengerId  1  1
1  PassengerId  2  1
2  PassengerId  3  1
3       Pclass  3  2
4       Pclass  1  1
5     Survived  1  2
6     Survived  0  1

或带有DataFrame.stack的原始解决方案:

df1 = (df.apply(pd.Series.value_counts)
         .stack()
         .astype(int)
         .rename_axis(('a','b'))
         .reset_index(name='c')
print (df1)
   a            b  c
0  0     Survived  1
1  1  PassengerId  1
2  1     Survived  2
3  1       Pclass  1
4  2  PassengerId  1
5  3  PassengerId  1
6  3       Pclass  2

答案 1 :(得分:2)

另一种替代方法是使用melt

df.reset_index().melt('index').groupby('index').value.value_counts()
Out[608]: 
index  value
0      0        1
       1        1
       3        1
1      1        2
       2        1
2      3        2
       1        1
Name: value, dtype: int64

答案 2 :(得分:1)

您可以尝试以下代码:

d={'PassengerId':pd.Series([1,2,3]),
  'Survived':pd.Series([0,1,1]),
  'Pclass':pd.Series([3,1,3])}
df=pd.DataFrame(d)
print(df)

s=[]
for i in range(df.shape[0]):
    s.append(pd.Series(df.apply(pd.value_counts).values[:,i]).dropna())
print('\nvalue counts each column:')
print(s)

输出:

   PassengerId  Survived  Pclass
0            1         0       3
1            2         1       1
2            3         1       3

value counts each column:
[1    1.0
2    1.0
3    1.0
dtype: float64, 0    1.0
1    2.0
dtype: float64, 1    1.0
3    2.0
dtype: float64]