我有一个脚本,可以从csv文件中提取数据,对其进行一些处理,然后创建一个输出excel文件。但是,这是一个繁琐的过程,因为我需要对多个文件进行处理。
问题:我是否可以同时在多个csv文件中运行此脚本,并为每个输入文件创建单独的excel文件输出?
我不确定在这里尝试什么。我已经读过我需要使用一个名为glob的模块,但是我不确定该怎么做。
此脚本适用于单个文件:
# Import libraries
import pandas as pd
import xlsxwriter
# Set system paths
INPUT_PATH = 'SystemPath//Downloads//'
INPUT_FILE = 'rawData.csv'
OUTPUT_PATH = 'SystemPath//Downloads//Output//'
OUTPUT_FILE = 'rawDataOutput.xlsx'
# Get data
df = pd.read_csv(INPUT_PATH + INPUT_FILE)
# Clean data
cleanedData = df[['State','Campaigns','Type','Start date','Impressions','Clicks','Spend(INR)',
'Orders','Sales(INR)','NTB orders','NTB sales']]
cleanedData = cleanedData[cleanedData['Impressions'] != 0].sort_values('Impressions',
ascending= False).reset_index()
cleanedData.loc['Total'] = cleanedData.select_dtypes(pd.np.number).sum()
cleanedData['CTR(%)'] = (cleanedData['Clicks'] /
cleanedData['Impressions']).astype(float).map("{:.2%}".format)
cleanedData['CPC(INR)'] = (cleanedData['Spend(INR)'] / cleanedData['Clicks'])
cleanedData['ACOS(%)'] = (cleanedData['Spend(INR)'] /
cleanedData['Sales(INR)']).astype(float).map("{:.2%}".format)
cleanedData['% of orders NTB'] = (cleanedData['NTB orders'] /
cleanedData['Orders']).astype(float).map("{:.2%}".format)
cleanedData['% of sales NTB'] = (cleanedData['NTB sales'] /
cleanedData['Sales(INR)']).astype(float).map("{:.2%}".format)
cleanedData = cleanedData[['State','Campaigns','Type','Start date','Impressions','Clicks','CTR(%)',
'Spend(INR)','CPC(INR)','Orders','Sales(INR)','ACOS(%)',
'NTB orders','% of orders NTB','NTB sales','% of sales NTB']]
# Create summary
summaryData = cleanedData.groupby(['Type'])[['Spend(INR)','Sales(INR)']].agg('sum')
summaryData.loc['Overall Snapshot'] = summaryData.select_dtypes(pd.np.number).sum()
summaryData['ROI'] = summaryData['Sales(INR)'] / summaryData['Spend(INR)']
# Push to excel
writer = pd.ExcelWriter(OUTPUT_PATH + OUTPUT_FILE, engine='xlsxwriter')
summaryData.to_excel(writer, sheet_name='Summary')
cleanedData.to_excel(writer, sheet_name='Overall Report')
writer.save()
我以前从未尝试过类似的方法,感谢您帮助我们解决这一问题
答案 0 :(得分:1)
类似的东西:
import os
import glob
import pandas as pd
os.chdir(r'path\to\folder') #changes folder path to working dir
filelist=glob.glob('*.csv') #creates a list of all csv files
for file in filelist: #loops through the files
df=pd.read_csv(file,...)
#Do something and create a final_df
final_df.to_excel(file[:-4],+'_output.xlsx',index=False) #excel with same name+ouput
答案 1 :(得分:1)
您可以在for循环中运行此脚本:
for file in os.listdir(INPUT_PATH):
if file.endswith('.csv') or file.endswith('.CSV'):
INPUT_FILE = INPUT_PATH + '/' + file
OUTPUT_FILE = INPUT_PATH + '/Outputs/' + file.[:-4] + 'xlsx'
答案 2 :(得分:1)
您可以使用Python的glob.glob()
从给定文件夹中获取所有CSV文件。对于返回的每个文件名,您都可以导出合适的输出文件名。文件处理可以移入以下功能:
# Import libraries
import pandas as pd
import xlsxwriter
import glob
import os
def process_csv(input_filename, output_filename):
# Get data
df = pd.read_csv(input_filename)
# Clean data
cleanedData = df[['State','Campaigns','Type','Start date','Impressions','Clicks','Spend(INR)',
'Orders','Sales(INR)','NTB orders','NTB sales']]
cleanedData = cleanedData[cleanedData['Impressions'] != 0].sort_values('Impressions',
ascending= False).reset_index()
cleanedData.loc['Total'] = cleanedData.select_dtypes(pd.np.number).sum()
cleanedData['CTR(%)'] = (cleanedData['Clicks'] /
cleanedData['Impressions']).astype(float).map("{:.2%}".format)
cleanedData['CPC(INR)'] = (cleanedData['Spend(INR)'] / cleanedData['Clicks'])
cleanedData['ACOS(%)'] = (cleanedData['Spend(INR)'] /
cleanedData['Sales(INR)']).astype(float).map("{:.2%}".format)
cleanedData['% of orders NTB'] = (cleanedData['NTB orders'] /
cleanedData['Orders']).astype(float).map("{:.2%}".format)
cleanedData['% of sales NTB'] = (cleanedData['NTB sales'] /
cleanedData['Sales(INR)']).astype(float).map("{:.2%}".format)
cleanedData = cleanedData[['State','Campaigns','Type','Start date','Impressions','Clicks','CTR(%)',
'Spend(INR)','CPC(INR)','Orders','Sales(INR)','ACOS(%)',
'NTB orders','% of orders NTB','NTB sales','% of sales NTB']]
# Create summary
summaryData = cleanedData.groupby(['Type'])[['Spend(INR)','Sales(INR)']].agg('sum')
summaryData.loc['Overall Snapshot'] = summaryData.select_dtypes(pd.np.number).sum()
summaryData['ROI'] = summaryData['Sales(INR)'] / summaryData['Spend(INR)']
# Push to excel
writer = pd.ExcelWriter(output_filename, engine='xlsxwriter')
summaryData.to_excel(writer, sheet_name='Summary')
cleanedData.to_excel(writer, sheet_name='Overall Report')
writer.save()
# Set system paths
INPUT_PATH = 'SystemPath//Downloads//'
OUTPUT_PATH = 'SystemPath//Downloads//Output//'
for csv_filename in glob.glob(os.path.join(INPUT_PATH, "*.csv")):
name, ext = os.path.splitext(os.path.basename(csv_filename))
# Create an output filename based on the input filename
output_filename = os.path.join(OUTPUT_PATH, f"{name}Output.xlsx")
process_csv(csv_filename, output_filename)
os.path.join()
可以用作将文件路径连接在一起的更安全的方法。
答案 3 :(得分:0)
尝试一下:
import glob
files = glob.glob(INPUT_PATH + "*.csv")
for file in files:
# Get data
df = pd.read_csv(file)
# Clean data
#your cleaning code
# Push to excel
writer = pd.ExcelWriter(OUTPUT_PATH + file.split("/")[-1].replace(".csv","_OUTPUT.xlxs", engine='xlsxwriter')