我创建了一个熊猫df,它在位置i和位置j之间具有距离。从起点P1和终点P2开始,我想找到一个子数据帧(距离矩阵),该子数据帧的df的一个轴具有P1,P2,另一轴具有其余索引。
我正在使用Pandas DF,因为我认为这是最有效的方法
dm_dict = # distance matrix in dict form where you can call dm_dict[i][j] and get the distance from i to j
dm_df = pd.DataFrame().from_dict(dm_dict)
P1 = dm_df.max(axis=0).idxmax()
P2 = dm_df[i].idxmax()
route = [i, j]
remaining_locs = dm_df[dm_df[~dm_df.isin(route)].isin(route)]
while not_done:
# go through the remaining_locs until found all the locations are added.
没有错误消息,但其余的df充满了nan而不是带有距离的df。
使用dm_df[~dm_df.isin(route)].isin(route)
似乎给了我一个准确的布尔df。
样本数据,从技术上讲,它是haversine距离,但欧几里得应该适合填充矩阵:
import numpy
def dist(i, j):
a = numpy.array((i[1], i[2]))
b = numpy.array((j[1], j[2]))
return numpy.linalg.norm(a-b)
locations = [
("Ottawa", 45.424722,-75.695),
("Edmonton", 53.533333,-113.5),
("Victoria", 48.428611,-123.365556),
("Winnipeg", 49.899444,-97.139167),
("Fredericton", 49.899444,-97.139167),
("StJohns", 47.561389, -52.7125),
("Halifax", 44.647778, -63.571389),
("Toronto", 43.741667, -79.373333),
("Charlottetown",46.238889, -63.129167),
("QuebecCity",46.816667, -71.216667 ),
("Regina", 50.454722, -104.606667),
("Yellowknife", 62.442222, -114.3975),
("Iqaluit", 63.748611, -68.519722)
]
dm_dict = {i: {j: dist(i, j) for j in locations if j != i} for i in locations}
答案 0 :(得分:0)
您似乎想要scipy的distance_matrix
:
df = pd.DataFrame(locations)
x = df[[1,2]]
dm = pd.DataFrame(distance_matrix(x,x),
index=df[0],
columns=df[0])
输出:
+----------------+------------+------------+------------+------------+--------------+------------+------------+------------+----------------+-------------+------------+--------------+-----------+
| | Ottawa | Edmonton | Victoria | Winnipeg | Fredericton | StJohns | Halifax | Toronto | Charlottetown | QuebecCity | Regina | Yellowknife | Iqaluit |
+----------------+------------+------------+------------+------------+--------------+------------+------------+------------+----------------+-------------+------------+--------------+-----------+
| 0 | | | | | | | | | | | | | |
+----------------+------------+------------+------------+------------+--------------+------------+------------+------------+----------------+-------------+------------+--------------+-----------+
| Ottawa | 0.000000 | 38.664811 | 47.765105 | 21.906059 | 21.906059 | 23.081609 | 12.148481 | 4.045097 | 12.592181 | 4.689667 | 29.345960 | 42.278586 | 19.678657 |
| Edmonton | 38.664811 | 0.000000 | 11.107987 | 16.759535 | 16.759535 | 61.080146 | 50.713108 | 35.503607 | 50.896264 | 42.813477 | 9.411122 | 8.953983 | 46.125669 |
| Victoria | 47.765105 | 11.107987 | 0.000000 | 26.267600 | 26.267600 | 70.658378 | 59.913580 | 44.241193 | 60.276176 | 52.173796 | 18.867990 | 16.637528 | 56.945306 |
| Winnipeg | 21.906059 | 16.759535 | 26.267600 | 0.000000 | 0.000000 | 44.488147 | 33.976105 | 18.802741 | 34.206429 | 26.105163 | 7.488117 | 21.334745 | 31.794214 |
| Fredericton | 21.906059 | 16.759535 | 26.267600 | 0.000000 | 0.000000 | 44.488147 | 33.976105 | 18.802741 | 34.206429 | 26.105163 | 7.488117 | 21.334745 | 31.794214 |
| StJohns | 23.081609 | 61.080146 | 70.658378 | 44.488147 | 44.488147 | 0.000000 | 11.242980 | 26.933071 | 10.500284 | 18.519147 | 51.974763 | 63.454538 | 22.625084 |
| Halifax | 12.148481 | 50.713108 | 59.913580 | 33.976105 | 33.976105 | 11.242980 | 0.000000 | 15.827902 | 1.651422 | 7.946971 | 41.444115 | 53.851052 | 19.731392 |
| Toronto | 4.045097 | 35.503607 | 44.241193 | 18.802741 | 18.802741 | 26.933071 | 15.827902 | 0.000000 | 16.434995 | 8.717042 | 26.111037 | 39.703942 | 22.761342 |
| Charlottetown | 12.592181 | 50.896264 | 60.276176 | 34.206429 | 34.206429 | 10.500284 | 1.651422 | 16.434995 | 0.000000 | 8.108112 | 41.691201 | 53.767927 | 18.320711 |
| QuebecCity | 4.689667 | 42.813477 | 52.173796 | 26.105163 | 26.105163 | 18.519147 | 7.946971 | 8.717042 | 8.108112 | 0.000000 | 33.587610 | 45.921044 | 17.145385 |
| Regina | 29.345960 | 9.411122 | 18.867990 | 7.488117 | 7.488117 | 51.974763 | 41.444115 | 26.111037 | 41.691201 | 33.587610 | 0.000000 | 15.477744 | 38.457705 |
| Yellowknife | 42.278586 | 8.953983 | 16.637528 | 21.334745 | 21.334745 | 63.454538 | 53.851052 | 39.703942 | 53.767927 | 45.921044 | 15.477744 | 0.000000 | 45.896374 |
| Iqaluit | 19.678657 | 46.125669 | 56.945306 | 31.794214 | 31.794214 | 22.625084 | 19.731392 | 22.761342 | 18.320711 | 17.145385 | 38.457705 | 45.896374 | 0.000000 |
+----------------+------------+------------+------------+------------+--------------+------------+------------+------------+----------------+-------------+------------+--------------+-----------+
答案 1 :(得分:0)
我很确定这就是我想要的:
filtered = dm_df.filter(items=route,axis=1).filter(items=set(locations).difference(set(route)), axis=0)
filtered是具有[2行x 10列]的df,然后我可以从那里找到最小值