我刚开始使用Keras并进行了一些图像预处理,因此我发现从ImageDataGenerator
接收的生成器正在for-loop
中无限期地迭代。
image_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1/255, rotation_range=45)
train_data_gen = image_gen.flow_from_directory(train_dir,
shuffle=True,
target_size=(IMG_SHAPE, IMG_SHAPE),
batch_size=batch_size
)
print('Total number of batches - {}'.format(len(train_data_gen)))
for n, i in enumerate(train_data_gen):
if n >= 30:
# I have to add explicit break statement to get out of loop when done with iterating over all the items present in generator.
break
batch_data = i[0]
print(n, batch_data[0].shape)
# TRY to access element out of bound to see if there really exists more than 30 elements.
print(''.format(train_data_gen[32]))
输出
Found 2935 images belonging to 5 classes.
Total number of batches - 30
0 (150, 150, 3)
1 (150, 150, 3)
2 (150, 150, 3)
.
.
.
29 (150, 150, 3)
---------------------------------------------------------------------------
ValueError: Traceback (most recent call last)
<ipython-input-20-aed377bb98f7> in <module>
13 batch_data = i[0]
14 print(n, batch_data[0].shape)
---> 15 print(''.format(train_data_gen[32]))
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in __getitem__(self, idx)
55 'but the Sequence '
56 'has length {length}'.format(idx=idx,
---> 57 length=len(self)))
58 if self.seed is not None:
59 np.random.seed(self.seed + self.total_batches_seen)
ValueError: Asked to retrieve element 32, but the Sequence has length 30
问题
ImageDataGenerator
是这样工作的吗?如果是这样,我可以避免以某种方式{@ {1}}检查零件吗? Keras版本:if n >=30
---> tf.keras.__version__
Tensorflow版本:2.2.4-tf
---> tf.VERSION
答案 0 :(得分:2)
实际上,train_data_gen
将无限批量生成数据。
调用model.fit_generator()
时,我们将train_data_gen
指定为生成器,并设置steps_per_epoch
(应为len(train_data)/batch_size
)。然后模型将知道何时完成一个单一时期。
答案 1 :(得分:1)
for e in range(epochs):
print('Epoch', e)
batches = 0
for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
model.fit(x_batch, y_batch)
batches += 1
if batches >= len(x_train) / 32:
# we need to break the loop by hand because
# the generator loops indefinitely
break