我正在尝试在C ++中实现逻辑回归,但是我得到的预测与我的预期甚至不尽相同。我不确定对逻辑回归或代码的理解是否有错误。
我检查了算法并弄乱了学习速度,但是结果非常不一致。
double theta[4] = {0,0,0,0};
double x[2][3] = {
{1,1,1},
{9,9,9},
};
double y[2] = {0,1};
//prediction data
double test_x[1][3] = {
{9,9,9},
};
int test_m = sizeof(test_x) / sizeof(test_x[0]);
int m = sizeof(x) / sizeof(x[0]);
int n = sizeof(theta) / sizeof(theta[0]);
int xn = n - 1;
struct Logistic
{
double sigmoid(double total)
{
double e = 2.71828;
double sigmoid_x = 1 / (1 + pow(e, -total));
return sigmoid_x;
}
double h(int x_row)
{
double total = theta[0] * 1;
for(int c1 = 0; c1 < xn; ++c1)
{
total += theta[c1 + 1] * x[x_row][c1];
}
double final_total = sigmoid(total);
//cout << "final total: " << final_total;
return final_total;
}
double cost()
{
double hyp;
double temp_y;
double error;
for(int c1 = 0; c1 < m; ++c1)
{
//passes row of x to h to calculate sigmoid(xi * thetai)
hyp = h(c1);
temp_y = y[c1];
error += temp_y * log(hyp) + (1 - temp_y) * log(1 - hyp);
}// 1 / m
double final_error = -.5 * error;
return final_error;
}
void gradient_descent()
{
double alpha = .01;
for(int c1 = 0; c1 < n; ++c1)
{
double error = cost();
cout << "final error: " << error << "\n";
theta[c1] = theta[c1] - alpha * error;
cout << "theta: " << c1 << " " << theta[c1] << "\n";
}
}
void train()
{
for(int epoch = 0; epoch <= 10; ++epoch)
{
gradient_descent();
cout << "epoch: " << epoch << "\n";
}
}
vector<double> predict()
{
double temp_total;
double total;
vector<double> final_total;
//hypothesis equivalent function
temp_total = theta[0] * 1;
for(int c1 = 0; c1 < test_m; ++c1)
{
for(int c2 = 0; c2 < xn; ++c2)
{
temp_total += theta[c2 + 1] * test_x[c1][c2];
}
total = sigmoid(temp_total);
//cout << "final total: " << final_total;
final_total.push_back(total);
}
return final_total;
}
};
int main()
{
Logistic test;
test.train();
vector<double> prediction = test.predict();
for(int c1 = 0; c1 < test_m; ++c1)
{
cout << "prediction: " << prediction[c1] << "\n";
}
}
答案 0 :(得分:0)
从很小的学习率开始,尝试更大的迭代次数。还没有测试您的代码。但是我想成本/错误/能量会从驼峰跳到驼峰。
答案 1 :(得分:0)
有些问题与您的问题无关,但不是使用pow计算e ^ -total,而是使用exp(这真是太快了!)。同样,也无需使Sigmoid函数成为成员函数,使其成为静态函数或仅使其成为普通C函数(不需要从结构中获取任何成员变量)。
static double sigmoid(double total)
{
return 1.0 / (1.0 + exp(-total));
}