我试图在此网站上刮取BoxOffice图表,并陷入将两个单独的图表制作到一个DataFrame中的问题。 (这是为什么它已经分开,但是应该将它们合并到一张相同的图表中)
URL: https://www.the-numbers.com/box-office-records/worldwide/all-movies/cumulative/released-in-2019
当涉及到两个单独的图表,但每个图表都不包含任何特定的代码名称时,如何处理这些列?
当我使用soup.select('table>thead>tr>th')
刮擦列时,它会显示两次,所以我只想在重复操作前剪切列。
示例。
Columns: [Rank, Movie, Worldwide Box Office, Domestic Box Office, International Box Office, DomesticShare, Rank, Movie, Worldwide Box Office, Domestic Box Office, International Box Office, DomesticShare]
import requests
from bs4 import BeautifulSoup as bs
URL = "https://www.the-numbers.com/box-office-records/worldwide/all-movies/cumulative/released-in-2019"
rq = requests.get(URL)
soup = bs(rq.content,'html.parser')
columns=soup.select('table > thead > tr > th')
columnlist=[]
for column in columns:
columnlist.append(column.text)
df=pd.DataFrame(columns=columnlist)
contents=soup.find_all('table')
contents=soup.select('tbody > tr')
dfcontent=[]
alldfcontents=[]
for content in contents:
tds = content.find_all('td')
for td in tds:
dfcontent.append(td.text)
alldfcontents.append(dfcontent)
dfcontent=[]
df = pd.DataFrame(columns=columnlist)
这就是我想作为DataFrame做的事情:
Columns: Rank, Movie, Worldwide Box Office, Domestic Box Office, International Box Office, DomesticShare
Factors: 1, Avengers Endgame, ...
...
100, ~, ...
希望我可以将其用于机器学习。
答案 0 :(得分:0)
#Read url
URL = "https://www.the-numbers.com/box-office-records/worldwide/all-movies/cumulative/released-in-2019"
data = requests.get(URL).text
#parse url
soup = BeautifulSoup(data, "html.parser")
#find the tables you want
table = soup.findAll("table")[1:]
#read it into pandas
df = pd.read_html(str(table))
#concat both the tables
df = pd.concat([df[0],df[1]])
df
Rank Movie Worldwide Box OfficeDomestic Box Office International Box Office DomesticShare
0 1 Avengers: Endgame $2,615,368,375 $771,368,375 $1,844,000,000 29.49%
1 2 Captain Marvel $1,122,281,059 $425,152,517 $697,128,542 37.88%
2 3 Liu Lang Di Qiu $692,163,684 NaN $692,163,684 NaN
3 4 How to Train Your Dragon: The Hidden World $518,846,075 $160,346,075 $358,500,000 30.90%
4 5 Alita: Battle Angel $402,976,036 $85,710,210 $317,265,826 21.27%
5 6 Shazam! $358,308,992 $138,067,613 $220,241,379 38.53%
这应该做您想做的,您只需要在用熊猫读取正确的html标签后将两个表连接在一起即可。