我有一个正在运行的应用程序,该应用程序使用多个过滤器来绘制一些数据,并且我希望过滤器是动态的,并且仅通过显示可用选项来依赖于上面的过滤器。例如,如果Location_Id == 1,则“用户类型”过滤器中仅“自行车”用户类型可用。当应用程序以所有受初始Location_ID起始值限制的过滤器启动时,这一切都有效,但是一旦我更改了初始输入(Location_Id),任何内容都不会自动更新,因此我必须执行“全选”以查看哪些数据可用于新选择的位置ID。我整个上午都在看书,似乎我可能需要在服务器中的某个位置包括一个react(),但是不清楚如何更新ui以及是否需要在某个地方使用render类型的函数。
#Example for stack overflow
library(shiny)
library(datasets)
library(dplyr)
library(shinyWidgets)
library(lubridate)
#Create test data
set.seed(10)
Dates. <- sample(c(seq(as.Date("2017-01-01"),as.Date("2017-12-28"),1),seq(as.Date("2018-01-01"),as.Date("2019-12-28"),1)),1000)
Facility_Type. <- sample(c("Bikelane","No facility"),length(Dates.),replace = T)
Data.. <- data.frame(Date = Dates., Facility_Type = Facility_Type.)
Data..$User_Type_Desc<- sample(c("Bike","Pedestrian"),nrow(Data..),replace = T)
Data..$Counts <- sample(1:100,nrow(Data..),replace = T)
Data..$Location_Id <- sample(c("01","02","03","04"),nrow(Data..),replace = T)
Data..$Month <- months(Data..$Date)
Data..$Year <- year(Data..$Date)
Data..$User_Type_Desc <- as.character(Data..$User_Type_Desc)
Data..$Facility_Type <- as.character(Data..$Facility_Type)
#Force some changes on data to highlight problem
Data..$User_Type_Desc[Data..$Location_Id%in%"01"] <- "Bike"
Data..$User_Type_Desc[Data..$Location_Id%in%"04"] <- "Pedestrian"
ui <-
#shinyUI(fluidPage(
navbarPage(title = "Bend Bike/PedTraffic Counts",
#Graphics panel
tabPanel("Charting",
#headerPanel(title = "Bend Traffic Count Data Viewer"),
sidebarLayout(
sidebarPanel(
#Select Location Id
selectInput("Location_Id","Select a Location Id",choices = unique(Data..$Location_Id)),
#Select Year
pickerInput(inputId = "Year", label = "Select/deselect all + format selected", choices = NULL,
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE),
#Select Month
pickerInput(inputId = "Month", label = "Select/deselect all + format selected", choices = NULL,
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE),
#Location details
##################
#Select User Types
pickerInput(inputId = "User_Type", label = "Select/deselect all + format selected", choices = NULL,
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE),
#Select Facility Types
pickerInput(inputId = "Facility_Type", label = "Select/deselect all + format selected", choices = NULL,
options = list(`actions-box` = TRUE, size = 10,`selected-text-format` = "count > 3"), multiple = TRUE)
#dateRangeInput("Date", "Input date range")
#selectInput("Date","Select a Product",choices = NULL)
#Panel end
),
mainPanel( plotOutput("location_plot"))
#Sidebar panel layout end
)
# Sidebar panel end
)
#PAge end
)
server <-
#print(str(product_list))
shinyServer(function(session,input,output) {
#Create selection menus
##########################
#Year selection with choices constrained by Location_Id
observe({
Years. <- unique(Data..$Year[Data..$Location_Id%in%input$Location_Id])
updatePickerInput(session,"Year","Select Year(s)",choices = Years.,selected = Years.[1])
})
#Month selection with Year choices
observe({
Months. <- unique(Data..$Month[Data..$Year%in%input$Year])
updatePickerInput(session,"Month","Select Month(s)",choices = Months., selected = Months.[1] )
})
#User Type
observe({
User_Type. <- unique(Data..$User_Type_Desc[Data..$Year%in%input$Year & Data..$Month%in%input$Month])
updatePickerInput(session,"User_Type","Select User Type(s)",choices = User_Type., selected = User_Type.[1])
})
#Facility Type
observe({
Facility_Type. <- unique(Data..$Facility_Type[Data..$Year%in%input$Year & Data..$Month%in%input$Month
& Data..$User_Type_Desc%in%input$User_Type])
updatePickerInput(session,"Facility_Type","Select Facility Type(s)",choices = Facility_Type., selected = Facility_Type.[1])
})
#Plot data
##########################
#Select final data and chart
output$location_plot <- renderPlot({
#Select data
dat <- Data..[Data..$Location_Id%in%input$Location_Id & Data..$Month%in%input$Month &
Data..$Year%in%input$Year & Data..$User_Type_Desc%in%input$User_Type,]
#Initialze chart
ggplot(data = dat, x=Date, y = Counts) +
geom_bar(aes(x = Date,y = Counts),color = "black", position = "dodge", stat = "identity")+
facet_wrap(Facility_Type~User_Type_Desc)
})
})
#Run App
shinyApp(ui,server)
答案 0 :(得分:0)
我已经针对上述问题开发了一个解决方案,该问题开始了该问题(使滤镜以适当的反应性进行更新),但是现在我添加了地图,在本示例中,在第一个选择器中进行选择后,应用程序往往会崩溃那就是状态。
我在下面创建了一个新示例,该示例回答了上述问题,但又提出了一个新示例:为什么我的应用程序崩溃了,这与我处理反应性的方式不正确有关吗?
为了使应用程序崩溃,您必须选择几个不同的状态并使其呈现。它似乎是在加利福尼亚进行的,所以让我想知道这是否与地图尝试呈现的数据量有关。不幸的是,鉴于RStudio崩溃,没有任何错误。不知道这是否是提出此问题的正确方法,但是如果反应性是RStudio崩溃的问题,我认为它仍然与此线程相关。感谢您的帮助!
library(shiny) # for shiny apps
library(ggplot2)
library(plotly)
library(dplyr)
library(shinyWidgets)
library(tigris)
library(mapview)
library(raster)
# Load(Create) data
State_01_Tracts_Sp <- tracts("01")
State_02_Tracts_Sp <- tracts("02")
State_04_Tracts_Sp <- tracts("04")
State_05_Tracts_Sp <- tracts("05")
State_06_Tracts_Sp <- tracts("06")
Tracts_Sp <- rbind(State_01_Tracts_Sp ,State_02_Tracts_Sp, State_04_Tracts_Sp,
State_05_Tracts_Sp , State_06_Tracts_Sp )
#Decode fips into descriptive state and county names
Tracts_Sp@data$State <-
fips_codes$state_name[match(Tracts_Sp@data$STATEFP,fips_codes$state_code)]
Tracts_Sp@data$County <-
fips_codes$county[match(Tracts_Sp@data$COUNTYFP,fips_codes$county_code)]
#Create a copy of the spatial data's data frame
Data.. <- Tracts_Sp@data
#Set up User Interface
ui <- fluidPage(
titlePanel("Census Viewer Test"),
tabsetPanel(
#Daily Counts Panel
##############
#Hourly Counts Panel
#######################
tabPanel("Tab 1",
#Call plot
fluidRow(column(width = 12,plotlyOutput("county_plot" ))),
#Location Details
fluidRow(
column(3,
h4("Select Details"),
uiOutput("State_selector"),
uiOutput("County_selector"),
uiOutput("Tract_selector")),
column(6,
#h4("Selected Location"),
leafletOutput("map_plot",height = 500))
#Close row
)
#Close panel
)
#Close setPanel
)
#PAge end
)
#Set up Server
#---------------------------
server <- shinyServer(function(session,input,output){
#Temporal Details
##################
#State
output$State_selector <- renderUI({
selectInput(inputId = "State",
label = "State", multiple = FALSE,
choices = c( unique(Data..$State)),
selected = unique(Data..$State)[1])
})
#County selection----
output$County_selector <- renderUI({
available0 <- as.character(unique(Data..$County[Data..$State %in% input$State ]
))
pickerInput(inputId = "County", label = "Select/deselect all + format selected",
choices = as.character(unique(available0)),
options = list(`actions-box` = TRUE, size = 10,`selected-text-format`
= "count > 3"), multiple = TRUE,selected = as.character(unique(available0)))
})
#Tract selection----
output$Tract_selector <- renderUI({
available1 <- as.character(unique(Data..$GEOID[Data..$State %in% input$State ] ))
pickerInput(inputId = "Tract", label = "Select/deselect all + format selected",
choices = as.character(unique(available1)),
options = list(`actions-box` = TRUE, size = 10,`selected-text-format`
= "count > 3"), multiple = TRUE,selected = as.character(unique(available1)))
})
#Graphics ######################### #选择最终数据和图表-----
output$county_plot <- renderPlotly({
#Select data
dat <- Data..[Data..$State%in%input$State & Data..$County%in%input$County &
Data..$GEOID%in%input$Tract ,]
#Set up axis parameters depending on amount of data
angle = 90
#Initialze chart
ggplotly(ggplot(data = dat, x=GEOID, y = ALAND, fill = State) +
geom_bar(aes(x=GEOID, y = ALAND, fill = State),color = "black",
position = "dodge", stat = "identity")+
ggtitle(paste("Land Area of Select Counties
",unique(dat$State),sep="")) +
#Center plot
theme(plot.title = element_text(hjust = 0.5)) +
ylab("LAnd Area") +
xlab("") +
guides(color=guide_legend("State")) +
theme(axis.text.x = element_text(angle = angle, hjust =
1),plot.background = element_rect(fill = "darkseagreen"))) %>% layout(dragmode =
"select")
})
#Select final data and map-----
output$map_plot <- renderLeaflet({
#Select data
Map_Data_Sp <- Tracts_Sp[Tracts_Sp@data$State%in%input$State,]
class(Map_Data_Sp )
#Create map
Map <- mapview(Map_Data_Sp, map.types = "OpenStreetMap", legend = FALSE,
col.regions = "red",color = "black",cex = 10)
Map@map
#Close map
})
})
#Run App
shinyApp(ui,server)