当我尝试训练自己建立的模型时,我发现损失和准确性没有改变。
import tensorflow as tf
tf.enable_eager_execution()
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
这是结果:
Epoch 1/5 60000/60000 [==============================] - 7s 123us/sample - loss: 12.9310 - acc: 0.1975
Epoch 2/5 60000/60000 [==============================] - 5s 87us/sample - loss: 12.8994 - acc: 0.1997
Epoch 3/5 60000/60000 [==============================] - 5s 85us/sample - loss: 12.9162 - acc: 0.1986
Epoch 4/5 60000/60000 [==============================] - 5s 84us/sample - loss: 12.9052 - acc: 0.1993
Epoch 5/5 60000/60000 [==============================] - 5s 84us/sample - loss: 12.9052 - acc: 0.1993
答案 0 :(得分:1)
在输入神经网络模型之前,您忘记将值缩放到0到1的范围。
代码:
import tensorflow as tf
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
输出:
Epoch 1/5
60000/60000 [==============================] - 5s 91us/step - loss: 0.4977 - acc: 0.8267
Epoch 2/5
60000/60000 [==============================] - 5s 85us/step - loss: 0.3745 - acc: 0.8652
Epoch 3/5
60000/60000 [==============================] - 5s 89us/step - loss: 0.3334 - acc: 0.8794
Epoch 4/5
60000/60000 [==============================] - 6s 93us/step - loss: 0.3103 - acc: 0.8874
Epoch 5/5
60000/60000 [==============================] - 5s 86us/step - loss: 0.2934 - acc: 0.8913