我的数据框如下
import pandas as pd
import numpy as np
IDs = ['A','A','A','B','B']
times = pd.date_range(start='01/01/2019',end='01/02/2019',freq='h')
times_2 = pd.date_range(start='01/01/2019',end='01/02/2019',freq='h') + pd.Timedelta('15min')
Vals = [np.random.randint(15,250) for x in enumerate(times)]
df = pd.DataFrame({'id' : IDs*5,
'Start' : times,
'End' : times_2,
'Value' : Vals},columns=['id','Start','End','Value'])
这给了我如下的df。
print(df.head(5))
id Start End Value
0 A 2019-01-01 00:00:00 2019-01-01 00:15:00 52
1 A 2019-01-01 01:00:00 2019-01-01 01:15:00 69
2 A 2019-01-01 02:00:00 2019-01-01 02:15:00 209
3 B 2019-01-01 03:00:00 2019-01-01 03:15:00 163
4 B 2019-01-01 04:00:00 2019-01-01 04:15:00 70
现在我要尝试的是在数据框中应用group by
以获取value列的总和,但是,在此过程中,我想保留的最小开始时间和最大结束时间我的df。
所以我的示例输出如下:
id Start End Value
0 A 2019-01-01 00:00:00 2019-01-01 22:15:00 2007
1 B 2019-01-01 03:00:00 2019-01-02 00:15:00 1385
我完成这项工作的唯一方法是通过开始和结束时间传递每个唯一ID的最小值和最大值,将它们传递到列表中,然后手动创建开始和结束时间,但这很慢并且凌乱且容易出错...希望这里的人可以指导我有关我所缺少的内容。
答案 0 :(得分:1)
将groupby
与agg
一起使用
df.groupby('id').agg({'Start':'min','End':'max','Value':'sum'})#reset_index()
Out[92]:
Start End Value
id
A 2019-01-01 00:00:00 2019-01-01 22:15:00 2152
B 2019-01-01 03:00:00 2019-01-02 00:15:00 972