研究一种检测图像中线性对象的新方法,我发现了一种将图像转换为怪异的缠结网络的转换。我的理论是,变换后的图像显示出空间相干性的主要路径。
这种分析是否已经在图像处理的其他领域或与其他应用程序一起进行了?
我用森林区域的卫星图像展示了一个示例:
我有图像操作经验,可以识别图像中的特征(例如边缘或直线),但是我从未见过这样的事情。
该方法基于每个像素周围的几个小波变换,考虑所有方向上的线并选择具有最大卷积值的角度。此操作导致每个像素有两个数字:最大卷积及其对应的角度,类似于傅立叶分析的大小和相位。在上面的示例中,显示了卷积图,其极值已缩放为灰色图。
如@ user1118321的评论中所建议,我已将转换与Sobel过滤器进行了比较:
Sobel算子近似于每个像素中图像的空间导数。使用经典的3x3内核,可以获得通常用于突出显示边缘的梯度向量的一阶近似值。我的过滤器使用任意内核大小(在上面的示例中为32x32),但不近似任何阶数的空间导数。如@Meisam的评论所指出的那样,该图像针对线性内核进行了卷积处理,这些线性内核可以解释为局部霍夫变换。选择具有最大卷积值的内核,图像在相应方向上局部近似为一条线。
这个假设回答了我的部分问题,但是过滤后的图像中存在的路径的确切含义仍然是未知的。这些路径似乎连接了图像的某些区域,可能在空间上是连贯的,或者仅仅是局部霍夫变换的叠加所产生的视觉伪像。