我正在测试github项目(CNN-facial-landmarks)
检测68个面部地标,我使用地标.py python脚本进行了训练(300WV,300V,Helen数据集) 我在训练期间平均损失增加。 我想知道这个问题的源头是什么?
def main(unused_argv):
# Create the Estimator
estimator = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="./model")
# Choose mode between Train, Evaluate and Predict
mode_dict = {
'train': tf.estimator.ModeKeys.TRAIN,
'eval': tf.estimator.ModeKeys.EVAL,
'predict': tf.estimator.ModeKeys.PREDICT
}
mode = mode_dict['train']
if mode == tf.estimator.ModeKeys.TRAIN:
estimator.train(input_fn=_train_input_fn, steps=200000)
# Export result as SavedModel.
estimator.export_savedmodel('./saved_model', serving_input_receiver_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
evaluation = estimator.evaluate(input_fn=_eval_input_fn)
print(evaluation)
else:
predictions = estimator.predict(input_fn=_predict_input_fn)
for _, result in enumerate(predictions):
img = cv2.imread(result['name'].decode('ASCII') + '.jpg')
marks = np.reshape(result['logits'], (-1, 2)) * IMG_WIDTH
for mark in marks:
cv2.circle(img, (int(mark[0]), int(
mark[1])), 1, (0, 255, 0), -1, cv2.LINE_AA)
img = cv2.resize(img, (512, 512))
cv2.imshow('result', img)
cv2.waitKey()
if __name__ == '__main__':
tf.app.run()