嗨,我有多索引熊猫数据框。图片很抱歉,但我发现它比普通代码更具解释性
由于数据不一致,我的某些行丢失了Parent_category
。在示例数据中,Parent_category是空白区域。
要获取您在图片上看到的数据框,我将数据按Child_category
分组。
如何用相同的Child_category
来填充缺少的Parent_category字段?
索引结构:
MultiIndex(levels=[['Apps', 'Bars', 'Bath', 'Beer', 'Books', 'Breakfast', 'Cellar', 'Charity', 'Cleaning', 'Clothing', 'Co-working', 'Coffee', 'Dining', 'Drugs', 'Education', 'Electronics', 'Entertainment', 'Groceries', 'Hair Cut', 'Hotel', 'Icecream', 'Lunch', 'Maintenance', 'Massage', 'Museums', 'Music', 'Parking', 'Petroleum', 'Rent', 'Repair', 'Resident', 'Snacks', 'Souvenir', 'Souvenirs', 'Spa & yoga', 'Taxi', 'Tea', 'Transport', 'Traveling', 'Visa', 'Yoga', 'Канцелярия'], ['', 'Car', 'Drinks', 'Eatings', 'Home', 'Spa & yoga', 'Transport', 'Traveling', 'Utilities', 'iTunes']],
codes=[[0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 41], [9, 0, 2, 4, 0, 2, 0, 0, 3, 0, 8, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 4, 5, 7, 9, 1, 1, 1, 1, 4, 0, 7, 0, 0, 0, 0, 2, 0, 6, 0, 0, 5, 0]],
names=['Child_category', 'Parent_category'],
sortorder=0)
重新索引后,我得到以下数据帧。我猜想用O(n ^ 2)可以在循环中填充数据,但是正在寻找优雅的解决方案。
答案 0 :(得分:1)
我相信您需要:
mux = pd.MultiIndex(levels=[['Apps', 'Bars', 'Bath', 'Beer', 'Books', 'Breakfast', 'Cellar', 'Charity', 'Cleaning', 'Clothing', 'Co-working', 'Coffee', 'Dining', 'Drugs', 'Education', 'Electronics', 'Entertainment', 'Groceries', 'Hair Cut', 'Hotel', 'Icecream', 'Lunch', 'Maintenance', 'Massage', 'Museums', 'Music', 'Parking', 'Petroleum', 'Rent', 'Repair', 'Resident', 'Snacks', 'Souvenir', 'Souvenirs', 'Spa & yoga', 'Taxi', 'Tea', 'Transport', 'Traveling', 'Visa', 'Yoga', 'Канцелярия'], ['', 'Car', 'Drinks', 'Eatings', 'Home', 'Spa & yoga', 'Transport', 'Traveling', 'Utilities', 'iTunes']],
codes=[[0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 41], [9, 0, 2, 4, 0, 2, 0, 0, 3, 0, 8, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 4, 5, 7, 9, 1, 1, 1, 1, 4, 0, 7, 0, 0, 0, 0, 2, 0, 6, 0, 0, 5, 0]],
names=['Child_category', 'Parent_category'],
sortorder=0)
df = pd.DataFrame({'a': range(52)}, index=mux)
对于每个Child_category
级别,获取第一个非空白值:
print (df.rename({'':np.nan}, level=1)
.reset_index()
.groupby('Child_category')
.first()
.set_index('Parent_category', append=True)
.head(20))
或每组用Parent_category
的值Child_category
替换空白:
print (df.rename({'':np.nan}, level=1)
.reset_index()
.groupby('Child_category')
.apply(lambda x: x.ffill().bfill())
.set_index(['Child_category', 'Parent_category'])
.head(20))