我收到此错误
AttributeError:“ Tensor”对象没有属性“ log_prob”
在使用Tensorflow概率实现变分自动编码器时。
def dense_layers(sizes):
return tfk.Sequential([tfkl.Dense(size, activation=tf.nn.leaky_relu) for size in sizes])
encoder = tfk.Sequential([
tfkl.InputLayer(input_shape=input_shape, name='encoder_input'),
dense_layers(intermediary_dims),
tfkl.Dense(latent_dim, activation = tf.nn.leaky_relu),
tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(latent_dim), activation=None),
tfpl.MultivariateNormalTriL(latent_dim,activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
], name='encoder')
encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)
decoder = tfk.Sequential([
tfkl.InputLayer(input_shape=[latent_dim]),
dense_layers(reversed(intermediary_dims)),
tfkl.Dense(tfpl.IndependentNormal.params_size(original_dim), activation=None),
tfpl.IndependentNormal(original_dim),
], name='decoder')
decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)
vae = tfk.Model(inputs=encoder.inputs,
outputs=decoder(encoder.outputs[0]),
name='vae_mlp') # fitting the model
negloglik = lambda x, rv_x: -rv_x.log_prob(x)
vae.compile(optimizer=tf.keras.optimizers.Nadam(),
loss=negloglik)
vae.summary() # summary
plot_model(vae,
to_file='vae_mlp.png',
show_shapes=True) #plotting the model
#I was expecting the Vae.summary
答案 0 :(得分:0)
我找到了解决方案。我安装了最新版本的Tensorflow概率:
! pip install --upgrade tfp-nightly
! pip install tf_nightly
! pip install tf_estimator_nightly