我有一个得分为0和1并有相应评论的数据框,我想在评论中找到0分和1分最常见的单词。我尝试了这个,但是它给出了所有单词的数量:
count = defaultdict(int)
l = df['Summary']
for number in l:
count[number] += 1
print(count)
如何在所有得分为1和0的行中找到最常见的值?
答案 0 :(得分:0)
尝试使用频率字典。如果您的列可以被视为列表列表:
data = [[0, "text samle 1"], [0, "text sample 2"], [1, "text sample 3"]]
...那么您可以:
fd0 = dict()
fd1 = dict()
for list_item in data:
associated_value = list_item[0]
#note the split(' ') splits the string into a list of words
for word in list_item[1].split(' '):
if associated_value == 0:
fd0[word] = 1 if word not in fd0 else fd0[word] + 1
elif associated_value == 1:
fd1[word] = 1 if word not in fd1 else fd1[word] + 1
在循环结束时,您的fd0应该具有标签0的频率,而fd1应该具有标签1的频率。
答案 1 :(得分:0)
假设您的数据如下所示
review score
0 bad review 0
1 good review 1
2 very bad review 0
3 movie was good 1
您可以做类似的事情
words = pd.concat([pd.Series(row['score'], row['review'].split(' '))
for _, row in df.iterrows()]).reset_index()
words.columns = ['word', 'score']
print(words.groupby(['score', 'word']).size())
为您提供
score word
0 bad 2
review 2
very 1
1 good 2
movie 1
review 1
was 1
dtype: int64
答案 2 :(得分:0)
most_common_0 = ''
most_common_1 = ''
for text, score in zip(df['Summary'], df['Score']):
if score == 1:
most_common_1 += ' ' + text
else:
most_common_0 += ' ' + text
from collections import Counter
c = Counter(most_common_1.split())
print(c.most_common(2)) # change this 2 to the number you want to analyze
输出
[('good', 2), ('and', 1)]